On the accurate large-scale simulation of ferrofluids

We present an approach to the accurate and efficient large-scale simulation of the complex dynamics of ferrofluids based on physical principles. Ferrofluids are liquids containing magnetic particles that react to an external magnetic field without solidifying. In this contribution, we employ smooth magnets to simulate ferrofluids in contrast to previous methods based on the finite element method or point magnets. We solve the magnetization using the analytical solution of the smooth magnets' field, and derive the bounded magnetic force formulas addressing particle penetration. We integrate the magnetic field and force evaluations into the fast multipole method allowing for efficient large-scale simulations of ferrofluids. The presented simulations are well reproducible since our approach can be easily incorporated into a framework implementing a Fast Multipole Method and a Smoothed Particle Hydrodynamics fluid solver with surface tension. We provide a detailed analysis of our approach and validate our results against real wet lab experiments. This work can potentially open the door for a deeper understanding of ferrofluids and for the identification of new areas of applications of these materials.

[1]  Katsuhiro Hirata,et al.  Meshless Method Employing Magnetic Moment Method and Particle Method for Magnetic Fluid Motion Analysis , 2016 .

[2]  Chenfanfu Jiang,et al.  An angular momentum conserving affine-particle-in-cell method , 2016, J. Comput. Phys..

[3]  J. V. Byrne,et al.  Ferrofluid hydrostatics according to classical and recent theories of the stresses , 1977 .

[4]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[5]  Huamin Wang,et al.  Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows , 2014, ACM Trans. Graph..

[6]  Salvatore Marrone,et al.  The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme , 2017 .

[7]  Matthias Teschner,et al.  Pressure Boundaries for Implicit Incompressible SPH , 2018, ACM Trans. Graph..

[8]  Jan Bender,et al.  Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids , 2020, Eurographics.

[9]  Yuan Cao,et al.  Formation of hexagonal pattern of ferrofluid in magnetic field , 2014 .

[10]  S Odenbach,et al.  Invalidation of the Kelvin force in ferrofluids. , 2001, Physical review letters.

[11]  Paul Meakin,et al.  Modeling of surface tension and contact angles with smoothed particle hydrodynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Ronald Fedkiw,et al.  A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension , 2015, J. Comput. Phys..

[13]  Gunar Matthies,et al.  Numerical study of soliton-like surface configurations on a magnetic fluid layer in the Rosensweig instability , 2008 .

[14]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[15]  Kei Iwasaki,et al.  Visual Simulation of Magnetic Fluid Using a Procedural Approach for Spikes Shape , 2012, VISIGRAPP.

[16]  Markus Zahn,et al.  Magnetic Fluid and Nanoparticle Applications to Nanotechnology , 2001 .

[17]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[18]  Ricardo H. Nochetto,et al.  The equations of ferrohydrodynamics: modeling and numerical methods , 2015, 1511.04381.

[19]  Wolfgang Straßer,et al.  Magnets in motion , 2008, SIGGRAPH Asia '08.

[20]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[21]  Matthias Teschner,et al.  A Parallel SPH Implementation on Multi‐Core CPUs , 2011, Comput. Graph. Forum.

[22]  Matthias Teschner,et al.  MLS pressure boundaries for divergence-free and viscous SPH fluids , 2018, Comput. Graph..

[23]  Christopher J. Backhouse,et al.  Ferrofluid-based microchip pump and valve , 2004 .

[24]  Salvatore Marrone,et al.  Numerical diffusive terms in weakly-compressible SPH schemes , 2012, Comput. Phys. Commun..

[25]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[26]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[27]  Matthias Teschner,et al.  Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion , 2017, IEEE Transactions on Visualization and Computer Graphics.

[28]  Matthias Teschner,et al.  An implicit viscosity formulation for SPH fluids , 2015, ACM Trans. Graph..

[29]  K. J. Vinoy,et al.  Radar Absorbing Materials: From Theory to Design and Characterization , 2011 .

[30]  Gunar Matthies,et al.  Numerical treatment of free surface problems in ferrohydrodynamics , 2006 .

[31]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[32]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[33]  Sun Young Park,et al.  Magnetization dynamics for magnetic object interactions , 2018, ACM Trans. Graph..

[34]  Ralph R. Martin,et al.  Pairwise Force SPH Model for Real-Time Multi-Interaction Applications , 2017, IEEE Transactions on Visualization and Computer Graphics.

[35]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[36]  Kei Iwasaki,et al.  VISUAL SIMULATION OF MAGNETIC FLUID TAKING INTO ACCOUNT DYNAMIC DEFORMATION IN SPIKES , 2012 .

[37]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[38]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[39]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[40]  K. Raj,et al.  Advances in ferrofluid technology , 1995 .

[41]  S. Thibault,et al.  Wavefront correction with a 37-actuator ferrofluid deformable mirror. , 2007, Optics express.

[42]  I. Rehberg,et al.  The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation , 2007, Journal of Fluid Mechanics.

[43]  M Miwa,et al.  Frequency characteristics of stiffness and damping effect of ferro fluid bearing , 2003 .

[44]  Jan Bender,et al.  Divergence-Free SPH for Incompressible and Viscous Fluids , 2017, IEEE Transactions on Visualization and Computer Graphics.

[45]  Ricardo H. Nochetto,et al.  A diffuse interface model for two-phase ferrofluid flows , 2016, 1601.06824.

[46]  A Engel Comment on "Invalidation of the Kelvin force in ferrofluids". , 2001, Physical review letters.

[47]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[48]  R. E. Rosensweig,et al.  AN INTRODUCTION TO FERROHYDRODYNAMICS , 1988 .

[49]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[50]  Stefan Odenbach,et al.  Ferrofluids: Magnetically Controllable Fluids And Their Applications , 2010 .

[51]  Sachiko Kodama,et al.  Dynamic ferrofluid sculpture: organic shape-changing art forms , 2008, CACM.

[52]  S. J. Lind,et al.  Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves , 2012, J. Comput. Phys..

[53]  Cris Cecka,et al.  FMMTL: FMM Template Library A Generalized Framework for Kernel Matrices , 2013, ENUMATH.

[54]  Hongan Wang,et al.  Local Poisson SPH For Viscous Incompressible Fluids , 2012, Comput. Graph. Forum.

[55]  M. Miwa,et al.  Frequency Characteristics of Stiffness and Damping Effect of a Ferrofluid Bearing , 2000, 2000 Asia-Pacific Magnetic Recording Conference. Digests of APMRC2000 on Mechanical and Manufacturing Aspects of HDD (Cat. No.00EX395).

[56]  K Hirata,et al.  Numerical Analysis of Transitional Behavior of Ferrofluid Employing MPS Method and FEM , 2010, IEEE Transactions on Magnetics.