Random fields and processes in mechanics of granular materials
暂无分享,去创建一个
[1] M. Ostoja-Starzewski,et al. Linear elasticity of planar delaunay networks. Part II: Voigt and Reuss bounds, and modification for centroids , 1990 .
[2] Gilles A. Francfort,et al. Homogenization and optimal bounds in linear elasticity , 1986 .
[3] I. Jasiuk,et al. SUCCESSIVE ITERATION METHOD APPLIED TO COMPOSITES CONTAINING SLIDING INCLUSIONS: EFFECTIVE MODULUS AND ANELASTICITY , 1990 .
[4] R. Hill. A self-consistent mechanics of composite materials , 1965 .
[5] Feng,et al. Effective-medium theory of percolation on central-force elastic networks. , 1985, Physical review. B, Condensed matter.
[6] M. Ostoja-Starzewski. Wavefront propagation in a class of random microstructures—1. bilinear elastic grains☆ , 1991 .
[7] Z. Hashin. Analysis of Composite Materials—A Survey , 1983 .
[8] B. Budiansky. On the elastic moduli of some heterogeneous materials , 1965 .
[9] Martin Ostoja-Starzewski,et al. Damage in a random microstructure: Size effects, fractals, and entropy maximization , 1989 .
[10] J. Nunziato,et al. On the influence of void compaction and material non-uniformity on the propagation of one-dimensional acceleration waves in granular materials , 1977 .
[11] K. Sobczyk. Stochastic waves: The existing results and new problems , 1986 .
[12] M. Ostoja-Starzewski. On Wavefront Propagation in Random Nonlinear Media , 1991 .
[13] M. Ostoja-Starzewski,et al. Linear elasticity of planar delaunay networks: Random field characterization of effective moduli , 1989 .
[14] J. Nunziato,et al. The behavior of one-dimensional acceleration waves in an inhomogeneous granular solid , 1978 .
[15] Bounds on constitutive response for a class of random material microstructures , 1990 .