Luminescence spectroscopy and microdomains

[1]  M. Almgren,et al.  Deactivation of excited species by diffusion-controlled quenching in clusters of reversed micelles , 1992 .

[2]  P. Hansson,et al.  Aggregation of Alkyltrimethylammonium Surfactants in Aqueous Poly(styrenesulfonate) Solutions , 1992 .

[3]  M. Almgren Diffusion-influenced deactivation processes in the study of surfactant aggregates , 1992 .

[4]  M. Auweraer,et al.  Determination of kinetic parameters of probe migration in micelles using simultaneous analysis of the fluorescence decay surface , 1992 .

[5]  J. Lang,et al.  Quaternary water-in-oil microemulsions. 2. Effect of carboxylic acid chain length on droplet size and exchange of material between droplets , 1992 .

[6]  M. Almgren,et al.  Time-resolved fluorescence and self-diffusion studies in systems of a cationic surfactant and an anionic polyelectrolyte , 1991 .

[7]  M. Auweraer,et al.  KINETICS OF LUMINESCENCE QUENCHING IN MICELLAR ASSEMBLIES INCLUDING EXCHANGE OF PROBE and QUENCHER * , 1991 .

[8]  P. Stilbs,et al.  Aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in the presence of sodium dodecyl sulfate in aqueous solution , 1991 .

[9]  J. Alsins,et al.  A fluorescence and phosphorescence study of AOT/H2O/alkane systems in the L2 reversed micellar phase , 1991 .

[10]  M. Tachiya Reaction kinetics in micellar solutions , 1990 .

[11]  A. Jada,et al.  Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic solvents. 2. Droplet sizes and interactions and exchange of material between droplets , 1990 .

[12]  F. D. De Schryver,et al.  Simultaneous analysis of single-photon timing data for the one-step determination of activation energies, frequency factors and quenching rate constants. Application to tryptophan photophysics. , 1989, Biophysical chemistry.

[13]  C. Sadron,et al.  Intermicellar migration of reactants: effect of additions of alcohols, oils, and electrolytes , 1987 .

[14]  M. Ameloot,et al.  Compartmental modeling of excited-state reactions: identifiabilityof the rate constants from fluorecences decay surfaces , 1986 .

[15]  E. Goddard Polymer—surfactant interaction Part I. uncharged water-soluble polymers and charged surfactants , 1986 .

[16]  E. Goddard Polymer—surfactant interaction part II. Polymer and surfactant of opposite charge , 1986 .

[17]  M. Almgren,et al.  Fluorescence Decay Kinetics in Monodisperse Confinements with Exchange of Probes and Quenchers , 1986 .

[18]  J. Loefroth,et al.  Time-resolved emission spectra, decay-associated spectra, and species-associated spectra , 1986 .

[19]  Ludwig Brand,et al.  Global analysis of fluorescence decay surfaces: excited-state reactions , 1985 .

[20]  P. Lianos,et al.  Fluorescence probe studies of the interactions between poly(oxyethylene) and surfactant micelles and microemulsion droplets in aqueous solutions , 1985 .

[21]  Jay R. Knutson,et al.  Simultaneous analysis of multiple fluorescence decay curves: A global approach , 1983 .

[22]  M. Tachiya On the kinetics of luminescence quenching in micellar systems , 1983 .

[23]  M. Grätzel,et al.  Dynamics of fluorescence quenching in micellar systems , 1983 .

[24]  M. Almgren,et al.  Effects of polydispersity on fluorescence quenching in micelles , 1982 .

[25]  B. Robinson,et al.  Dynamic Processes in Water-in-Oil Microemulsions , 1981 .

[26]  M. Tachiya,et al.  Theory of diffusion‐controlled reactions on spherical surfaces and its application to reactions on micellar surfaces , 1981 .

[27]  J. Verhoeven,et al.  Charge-transfer complexation in micellar solutions. Water penetrability of micelles , 1981 .

[28]  M. Almgren,et al.  Determination of micelle aggregation numbers and micelle fluidities from time-resolved fluorescence quenching studies , 1981 .

[29]  J. J. Kozak,et al.  A stochastic approach to the theory of intramicellar kinetics. II. Master equation for reversible reactions , 1980 .

[30]  M. Auweraer,et al.  Quenching of 1-methylpyrene by Cu2+ in sodium dodecylsulfate. A more general kinetic model , 1979 .

[31]  J. K. Thomas,et al.  Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems , 1977 .

[32]  M. Tachiya Application of a generating function to reaction kinetics in micelles. Kinetics of quenching of luminescent probes in micelles , 1975 .

[33]  G. Weber,et al.  Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. , 1970, Biochemistry.

[34]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[35]  F. D. De Schryver,et al.  Time-resolved fluorescence quenching in micellar assemblies , 1993 .

[36]  M. Auweraer,et al.  Micellar properties of aqueous-solutions of hexadecyltrimethylammonium salts in the presence of nonionic polymer , 1993 .

[37]  M. Ameloot,et al.  Global analysis of unmatched polarized fluorescence decay curves , 1993 .

[38]  F. D. Schryver,et al.  Change in the Micellar Aggregation Number or in the Size Distribution? A Dynamic Fluorescence Quenching Study of Aqueous Cetyltrimethylammonium Chloride , 1993 .

[39]  M. Ameloot,et al.  Kinetics and identifiability of intramolecular two-state excited-state processes with added quencher. Global compartmental analysis of the fluorescence decay surface , 1993 .

[40]  M. Auweraer,et al.  Fluorescence quenching in micellar microdomains - analysis of an approximate solution to the fluorescence decay including exchange of probe and quencher , 1992 .

[41]  M. Ameloot,et al.  Non-a-priori analysis of fluorescence decay surfaces of excited-state processes .3. intermolecular excimer formation of pyrene quenched by iodomethane , 1992 .

[42]  M. Ameloot,et al.  Kinetics and identifiability of intramolecular two-state excited-state processes: global compartmental analysis of the fluorescence decay surface , 1992 .

[43]  M. Ameloot,et al.  NON A PRIORI ANALYSIS OF FLUORESCENCE DECAY SURFACES OF EXCITED-STATE PROCESSES .1. THEORY , 1991 .

[44]  M. Auweraer,et al.  Stochastic model for fluorescence quenching in monodisperse micelles with probe migration , 1991 .

[45]  M. Ameloot,et al.  Non-a-priori analysis of fluorescence decay surfaces of excited-state processes. 2. Intermolecular excimer formation of pyrene , 1991 .

[46]  M. Almgren,et al.  Sodium dodecylsulfate-poly(ethyleneoxide) Interactions studied by time-resolved fluorescence quenching , 1991 .

[47]  D. Fornasiero,et al.  Study of the absorption spectra of pyrene complexed to paraquat in pentanol–sodium dodecylsulphate micelles , 1990 .

[48]  J. Lang,et al.  Recent developments in fluorescence probing of micellar solutions and microemulsions , 1990 .

[49]  M. Ameloot,et al.  A systematic study of the global analysis of multiexponential fluorescence decay surfaces using reference convolution , 1990 .

[50]  M. Auweraer,et al.  Simultaneous analysis of time-resolved fluorescence quenching data in aqueous micellar systems in the presence and absence of added alcohol , 1989 .

[51]  A. Jada,et al.  Relation between electrical percolation and rate constant for exchange of material between droplets in water in oil microemulsions , 1989 .

[52]  B. Robinson,et al.  Fluorescence quenching as a probe of size domains and critical fluctuations in water-in-oil microemulsions , 1987 .

[53]  B. Robinson,et al.  The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion , 1987 .

[54]  D. F. Evans,et al.  Determination of micelle size and polydispersity by fluorescence quenching. Experimental results , 1986 .

[55]  G. Warr,et al.  Determination of micelle size and polydispersity by fluorescence quenching. Theory and numerical results , 1986 .

[56]  Ludwig Brand,et al.  Global and Target Analysis of Complex Decay Phenomena , 1985 .

[57]  J. Löfroth Recent Developments in the Analysis of Fluorescence Intensity and Anisotropy Data , 1985 .

[58]  M. Tachiya Kinetics of quenching of luminescent probes in micellar systems. II , 1982 .

[59]  J. K. Thomas,et al.  Luminescence decay of hydrophobic molecules solubilized in aqueous micellar systems. Kinetic model , 1974 .