Generalized and Doubly Generalized LDPC Codes With Random Component Codes for the Binary Erasure Channel

In this paper, a method for the asymptotic analysis of generalized low-density parity-check (GLDPC) codes and doubly generalized low-density parity-check (D-GLDPC) codes over the binary erasure channel (BEC), based on extrinsic information transfer (EXIT) chart, is described. This method overcomes the problem consisting of the impossibility to evaluate the EXIT function for the check or variable component codes, in situations where the information functions or split information functions for component codes are unknown. According to the proposed technique, GLDPC codes and D-GLDPC codes where the generalized check and variable component codes are random codes with minimum distance at least 2, are considered. A technique is then developed which finds the EXIT chart for the overall GLDPC or D-GLDPC code, by evaluating the expected EXIT function for each check and variable component code. This technique is finally combined with the differential evolution algorithm in order to generate some good GLDPC and D-GLDPC edge distributions. Numerical results of long, random codes, are presented which confirm the effectiveness of the proposed approach. They also reveal that D-GLDPC codes can outperform standard LDPC codes and GLDPC codes in terms of both waterfall performance and error floor.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[3]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[4]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[5]  Tor Helleseth,et al.  On the information function of an error-correcting code , 1997, IEEE Trans. Inf. Theory.

[6]  J. Boutros,et al.  Generalized low density (Tanner) codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[7]  Michael Lentmaier,et al.  On generalized low-density parity-check codes based on Hamming component codes , 1999, IEEE Communications Letters.

[8]  Amin Shokrollahi,et al.  New Sequences of Linear Time Erasure Codes Approaching the Channel Capacity , 1999, AAECC.

[9]  R. Storn,et al.  Design of efficient erasure codes with differential evolution , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[10]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[11]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[12]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[13]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[14]  Marco Chiani,et al.  Design and performance evaluation of some high-rate irregular low-density parity-check codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[15]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[16]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[17]  Samuel J. Dolinar,et al.  Design and iterative decoding of networks of many small codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[18]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[19]  C. Méasson,et al.  Further analytic properties of exit-like curves and applications , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[20]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[21]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[22]  Michael Lentmaier,et al.  An analysis of the block error probability performance of iterative decoding , 2005, IEEE Transactions on Information Theory.

[23]  I. Djordjevic,et al.  Generalized low-density parity-check codes for optical communication systems , 2005, Journal of Lightwave Technology.

[24]  Marc P. C. Fossorier,et al.  CTH08-2: EXIT Chart Analysis for Doubly Generalized LDPC Codes , 2006, IEEE Globecom 2006.

[25]  William E. Ryan,et al.  Low-Floor Tanner Codes Via Hamming-Node or RSCC-Node Doping , 2006, AAECC.

[26]  Simon Litsyn,et al.  Analysis of low-density parity-check codes based on EXIT functions , 2006, IEEE Transactions on Communications.

[27]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[28]  Jinghu Chen,et al.  A hybrid coding scheme for the Gilbert-Elliott channel , 2006, IEEE Transactions on Communications.

[29]  Lajos Hanzo,et al.  Symbol-flipping based decoding of generalized low-density parity-check codes over GF(q) , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[30]  Alexander Barg,et al.  Distance properties of expander codes , 2004, IEEE Transactions on Information Theory.

[31]  Andrea Montanari,et al.  How to find good finite-length codes: from art towards science , 2006, Eur. Trans. Telecommun..

[32]  Li Ping,et al.  Generalized Low-Density Parity-Check Codes Based on Hadamard Constraints , 2007, IEEE Transactions on Information Theory.

[33]  William E. Ryan,et al.  Design of Generalized LDPC codes and their decoders , 2007 .

[34]  William E. Ryan,et al.  Quasi-cyclic generalized ldpc codes with low error floors , 2007, IEEE Transactions on Communications.

[35]  Nenad Miladinovic,et al.  Generalized LDPC codes and generalized stopping sets , 2008, IEEE Transactions on Communications.

[36]  Marco Chiani,et al.  Doubly-Generalized LDPC Codes: Stability Bound Over the BEC , 2008, IEEE Transactions on Information Theory.

[37]  Marc P. C. Fossorier,et al.  Doubly Generalized LDPC Codes over the AWGN Channel , 2009, IEEE Transactions on Communications.