PKM Mechatronic Clamping Adaptive Device

This study proposes a novel adaptive fixturing device based on active clamping systems for smart micropositioning of thin-walled precision parts. The modular architecture and the structure flexibility make the system suitable for various industrial applications. The proposed device is realized as a Parallel Kinematic Machine (PKM), opportunely sensorized and controlled, able to perform automatic error-free workpiece clamping procedures, drastically reducing the overall fixturing set-up time. The paper describes the kinematics and dynamics of this mechatronic system. A first campaign of experimental trails has been carried out on the prototype, obtaining promising results.

[1]  Alberto Borboni,et al.  Precision Point Design of a Cam Indexing Mechanism , 2012 .

[2]  Chia-Hsiang Menq,et al.  Large travel ultra precision x-y-/spl theta/ motion control of a magnetic-suspension stage , 2003 .

[3]  Alberto Borboni,et al.  Shape memory actuator with slider and slot layout and single fan cooling , 2014, 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA).

[4]  Alberto Borboni,et al.  Commanded Motion Optimization to Reduce Residual Vibration , 2015 .

[5]  Alberto Borboni,et al.  Machine Tools Thermostabilization Using Passive Control Strategies , 2012 .

[6]  Xianmin Zhang,et al.  Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning platform , 2015 .

[7]  J. Lienig,et al.  A Simple Phenomenological Model for Magnetic Shape Memory Actuators , 2015, IEEE Transactions on Magnetics.

[8]  Yuen Kuan Yong,et al.  Piezoelectric Actuators With Integrated High-Voltage Power Electronics , 2015, IEEE/ASME Transactions on Mechatronics.

[9]  Chia-Hsiang Menq,et al.  Ultra precision motion control of a multiple degrees of freedom magnetic suspension stage , 2002 .

[10]  Yoon Su Baek,et al.  Study on a novel contact-free planar system using direct drive DC coils and permanent magnets , 2002 .

[11]  Eiji Shamoto,et al.  Ultraprecision 6-Axis Table Driven by Means of Walking Drive , 2000 .

[12]  Franz Keplinger,et al.  Planar Magnetostrictive Micromechanical Actuator , 2015, IEEE Transactions on Magnetics.

[13]  N. Gabdullin,et al.  Review of properties of magnetic shape memory (MSM) alloys and MSM actuator designs , 2015 .

[14]  Alberto Borboni,et al.  Large Deflection of a Non-Linear, Elastic, Asymmetric Ludwick Cantilever Beam , 2010 .

[15]  Alberto Borboni,et al.  Characterization of a New SMA Actuator , 2014 .

[16]  Tadahiko Shinshi,et al.  X-Y-θ Nano-Positioning Table System for a Mother Machine , 2004 .

[17]  T. Higuchi,et al.  Micropositioning device using impact force of piezoelectric flying wires , 2005, IEEE/ASME Transactions on Mechatronics.

[18]  Alberto Borboni,et al.  Reliability Roadmap for Mechatronic Systems , 2013, ICRA 2013.

[19]  Pengbo Liu,et al.  Design and analysis of an X–Y parallel nanopositioner supporting large-stroke servomechanism , 2015 .

[20]  Qingsong Xu,et al.  Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation , 2015, IEEE Transactions on Industrial Electronics.

[21]  Chia-Hsiang Menq,et al.  Modeling and control of a six-axis precision motion control stage , 2005 .

[22]  Alberto Borboni,et al.  Automatic Procedures as Help for Optimal Cam Design , 2006 .

[23]  Kee S. Moon,et al.  Inverse kinematic modeling of a coupled flexure hinge mechanism , 1999 .

[24]  Alberto Borboni,et al.  Stochastic Evaluation and Analysis of Free Vibrations in Simply Supported Piezoelectric Bimorphs , 2013 .

[25]  Alberto Borboni,et al.  Movement Optimization of a Redundant Serial Robot for High-Quality Pipe Cutting , 2008 .

[26]  Yoon Su Baek,et al.  Precision stage using a non-contact planar actuator based on magnetic suspension technology , 2003 .

[27]  Il Hong Suh,et al.  Design and experiment of a 3 DOF parallel micro-mechanism utilizing flexure hinges , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[28]  Tadahiro Ohmi,et al.  0.69 nm resolution ultrasonic motor for large stroke precision stage , 2001, Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).

[29]  S. V. Sreenivasan,et al.  Kinematic design of large displacement precision XY positioning stage by using cross strip flexure joints and over-constrained mechanism , 2008 .

[30]  Seyyed M. Hasheminejad,et al.  SUPERSONIC FLUTTER CONTROL OF AN ELECTRORHEOLOGICAL FLUID-BASED SMART CIRCULAR CYLINDRICAL SHELL , 2014 .

[31]  Yoon Su Baek,et al.  Contact-free moving-magnet type of micropositioner with optimized specification , 2002 .

[32]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[33]  S H Chang,et al.  An ultra-precision XYtheta(Z) piezo-micropositioner. I. Design and analysis. , 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[34]  Toshiro Higuchi,et al.  Precise positioning using electrostatic glass motor , 2002 .

[35]  S. A. Tobias Machine-tool vibration , 1965 .

[36]  P. Gao,et al.  A new piezodriven precision micropositioning stage utilizing flexure hinges , 1999 .

[37]  Philippe Lutz,et al.  Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control , 2015, IEEE/ASME Transactions on Mechatronics.

[38]  Zhaoying Zhou,et al.  An XYθ mechanism actuated by one actuator , 2004 .

[39]  P. Minotti,et al.  New multi-degree of freedom piezoelectric micromotors for micromanipulator applications , 1995, 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium.

[40]  Alberto Borboni,et al.  Stochastic Analysis of Free Vibrations in Piezoelectric Bimorphs , 2006 .

[41]  Jie Gu,et al.  Six-axis nanopositioning device with precision magnetic levitation technology , 2004, IEEE/ASME Transactions on Mechatronics.

[42]  T. Noritsugu,et al.  Application of electromagnetic actuator using rubber film to three-degrees-of-freedom precision stage , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[43]  Martin L. Culpepper,et al.  Design of a low-cost nano-manipulator which utilizes a monolithic, spatial compliant mechanism , 2004 .