With Nanoplasmonics towards Fusion
暂无分享,去创建一个
A. Bonyár | G. Galbács | N. Kroó | M. Csete | M. Veres | L. Csernai | M. Aladi | A. Szenes | J. Kámán | R. Holomb | I. Rigó | M. Szalóki | D. Vass | E. Tóth | Shireen Zangana | M. Kedves | A. Borók | I. Papp | T. Biró | Rebeka Kovács | Ágnes Nagyné Nagyné Szokol | Nóra Tarpataki
[1] A. Bonyár,et al. Kinetic model of resonant nanoantennas in polymer for laser induced fusion , 2023, Frontiers in Physics.
[2] P. Petrik,et al. The Effect of Femtosecond Laser Irradiation and Plasmon Field on the Degree of Conversion of a UDMA-TEGDMA Copolymer Nanocomposite Doped with Gold Nanorods , 2022, International journal of molecular sciences.
[3] N. Kroó,et al. Plasmonic nanoresonator distributions for uniform energy deposition in active targets , 2022, Optical Materials Express.
[4] T. Biró,et al. Kinetic Model Evaluation of the Resilience of Plasmonic Nanoantennas for Laser-Induced Fusion , 2022, PRX Energy.
[5] M. Shen,et al. Study the plasmonic property of gold nanorods highly above damage threshold via single-pulse spectral hole-burning experiments , 2021, Scientific Reports.
[6] N. Kroó,et al. Comparative Study on the Uniform Energy Deposition Achievable via Optimized Plasmonic Nanoresonator Distributions , 2021, Plasmonics.
[7] L. Bravina,et al. Laser wake field collider , 2020, Physics Letters A.
[8] C. Png,et al. Particle simulation of plasmons , 2020, Nanophotonics.
[9] I. Barszczewska-Rybarek. A Guide through the Dental Dimethacrylate Polymer Network Structural Characterization and Interpretation of Physico-Mechanical Properties , 2019, Materials.
[10] Zhi Zhang,et al. Progress of laser-induced breakdown spectroscopy in nuclear industry applications , 2019, Journal of Physics D: Applied Physics.
[11] N. Kroó,et al. Radiation dominated implosion with nano-plasmonics , 2017, Laser and Particle Beams.
[12] J. Baumberg,et al. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons , 2017, ACS photonics.
[13] Cong Li,et al. Review of LIBS application in nuclear fusion technology , 2016 .
[14] S. Yasuda,et al. Visualization of Active Sites for Plasmon-Induced Electron Transfer Reactions Using Photoelectrochemical Polymerization of Pyrrole , 2016 .
[15] R. G. Evans,et al. Contemporary particle-in-cell approach to laser-plasma modelling , 2015 .
[16] Jiangtian Li,et al. Plasmon-induced resonance energy transfer for solar energy conversion , 2015, Nature Photonics.
[17] T. Lian,et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition , 2015, Science.
[18] L. Csernai,et al. Volume ignition via time-like detonation in pellet fusion , 2015, 1503.03299.
[19] L. Gremillet,et al. Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes , 2012 .
[20] David A. Cremers,et al. Laser-Induced Breakdown Spectroscopy—Capabilities and Limitations , 2009 .
[21] S. Maier. Plasmonics: Fundamentals and Applications , 2007 .
[22] Kiichiro Kagawa,et al. Hydrogen and Deuterium Analysis Using Laser‐Induced Plasma Spectroscopy , 2006 .
[23] Shigeru Yonemura,et al. Weighted Particles in Coulomb Collision Simulations Based on the Theory of a Cumulative Scattering Angle , 1998 .
[24] Mark A. Ratner,et al. 6-31G * basis set for atoms K through Zn , 1998 .
[25] A. Becke,et al. Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.
[26] Parr,et al. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.