Finite element methods for linear hyperbolic problems

[1]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[2]  Juhani Pitkäranta,et al.  CONVERGENCE OF A FULLY DISCRETE SCHEME FOR TWO-DIMENSIONAL NEUTRON TRANSPORT* , 1983 .

[3]  T. Hughes,et al.  A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. , 1982 .

[4]  T. Hughes,et al.  Streamline upwind formulations for advection-diffusion, Navier-Stokes, and first-order hyperbolic equations. , 1982 .

[5]  Uno Nävert,et al.  An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .

[6]  A. Brooks,et al.  A Petrov-Galerkin Finite Element Formulation for Convection Dominated Flows , 1981 .

[7]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[8]  V. Thomée Some interior estimates for semidiscrete Galerkin approximations for parabolic equations , 1979 .

[9]  Pierre Jamet,et al.  Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .

[10]  G. D. Raithby,et al.  Skew upstream differencing schemes for problems involving fluid flow , 1976 .

[11]  Richard H. Gallagher,et al.  Finite elements in fluids , 1975 .

[12]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[13]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[14]  V. Thomée,et al.  Estimates Near Discontinuities for Some Difference Schemes. , 1971 .

[15]  Vidar Thomée,et al.  Stability and Convergence Rates in $L^p$ for Certain Difference Schemes. , 1970 .