Stochastic analysis and regeneration of rough surfaces.

We investigate the Markov property of rough surfaces. Using stochastic analysis, we characterize the complexity of the surface roughness by means of a Fokker-Planck or Langevin equation. The obtained Langevin equation enables us to regenerate surfaces with similar statistical properties compared with the observed morphology by atomic force microscopy.

[1]  M. R. R. Tabar,et al.  Height fluctuations and intermittency of V2O5 films by atomic force microscopy , 2003, cond-mat/0306035.

[2]  J. Peinke,et al.  Comment on "Indispensable finite time corrections for Fokker-Planck equations from time series data". , 2002, Physical review letters.

[3]  H Kantz,et al.  Indispensable finite time corrections for Fokker-Planck equations from time series data. , 2001, Physical review letters.

[4]  Joachim Peinke,et al.  Experimental indications for Markov properties of small-scale turbulence , 2001, Journal of Fluid Mechanics.

[5]  K. Weron,et al.  Stochastic origins of the long-range correlations of ionic current fluctuations in membrane channels. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  A. Giacometti,et al.  Pseudospectral approach to inverse problems in interface dynamics. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Jan Raethjen,et al.  Extracting model equations from experimental data , 2000 .

[8]  J. Peinke,et al.  How to quantify deterministic and random influences on the statistics of the foreign exchange market , 1999, Physical review letters.

[9]  M. R. Rahimi Tabar,et al.  Theoretical Model for the Kramers-Moyal Description of Turbulence Cascades , 1999, cond-mat/9907063.

[10]  Zbigniew J. Grzywna,et al.  NON-MARKOVIAN CHARACTER OF IONIC CURRENT FLUCTUATIONS IN MEMBRANE CHANNELS , 1998 .

[11]  J. D. Hosson,et al.  Influence of atomic force microscope tip-sample interaction on the study of scaling behavior , 1997 .

[12]  J. Peinke,et al.  Description of a Turbulent Cascade by a Fokker-Planck Equation , 1997 .

[13]  G. Vojta,et al.  Fractal Concepts in Surface Growth , 1996 .

[14]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[15]  Sander,et al.  Inverse method for interface problems. , 1993, Physical review letters.

[16]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[17]  R. Grimshaw Journal of Fluid Mechanics , 1956, Nature.