Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations

We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribution within this Wasserstein ball. The state-of-the-art methods for solving the resulting distributionally robust optimization problems rely on global optimization techniques, which quickly become computationally excruciating. In this paper we demonstrate that, under mild assumptions, the distributionally robust optimization problems over Wasserstein balls can in fact be reformulated as finite convex programs—in many interesting cases even as tractable linear programs. Leveraging recent measure concentration results, we also show that their solutions enjoy powerful finite-sample performance guarantees. Our theoretical results are exemplified in mean-risk portfolio optimization as well as uncertainty quantification.

[1]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[2]  S. Vaida,et al.  Studies in the Mathematical Theory of Inventory and Production , 1958 .

[3]  S. Karlin,et al.  Studies in the Mathematical Theory of Inventory and Production, by K.J. Arrow, S. Karlin, H. Scarf with contributions by M.J. Beckmann, J. Gessford, R.F. Muth. Stanford, California, Stanford University Press, 1958, X p.340p., $ 8.75. , 1959, Bulletin de l'Institut de recherches économiques et sociales.

[4]  A. Mukherjea,et al.  Real and Functional Analysis , 1978 .

[5]  Thomas Cover Learning and generalization , 1991, COLT '91.

[6]  A. Müller Integral Probability Metrics and Their Generating Classes of Functions , 1997, Advances in Applied Probability.

[7]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[8]  J. A. Cuesta-Albertos,et al.  Tests of goodness of fit based on the $L_2$-Wasserstein distance , 1999 .

[9]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[10]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[11]  Ioana Popescu,et al.  On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..

[12]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[13]  Gábor Lugosi,et al.  Concentration Inequalities , 2008, COLT.

[14]  C. Villani Topics in Optimal Transportation , 2003 .

[15]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[16]  C. Villani,et al.  Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.

[17]  Alexander Shapiro,et al.  On Complexity of Stochastic Programming Problems , 2005 .

[18]  Robert L. Winkler,et al.  The Optimizer's Curse: Skepticism and Postdecision Surprise in Decision Analysis , 2006, Manag. Sci..

[19]  Martin E. Dyer,et al.  Computational complexity of stochastic programming problems , 2006, Math. Program..

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  Garud Iyengar,et al.  Ambiguous chance constrained problems and robust optimization , 2006, Math. Program..

[22]  Giuseppe Carlo Calafiore,et al.  Ambiguous Risk Measures and Optimal Robust Portfolios , 2007, SIAM J. Optim..

[23]  G. Pflug,et al.  Ambiguity in portfolio selection , 2007 .

[24]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[25]  J. Mashreghi Representation Theorems in Hardy Spaces , 2009 .

[26]  Erick Delage,et al.  Distributionally robust optimization in context of data-driven problems , 2009 .

[27]  Melvyn Sim,et al.  TRACTABLE ROBUST EXPECTED UTILITY AND RISK MODELS FOR PORTFOLIO OPTIMIZATION , 2009 .

[28]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[29]  Xuan Vinh Doan,et al.  Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion , 2010, Math. Oper. Res..

[30]  Thomas A. Weber,et al.  Monotone Approximation of Decision Problems , 2010, Oper. Res..

[31]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[32]  Panos M. Pardalos,et al.  Convex optimization theory , 2010, Optim. Methods Softw..

[33]  O. Catoni Challenging the empirical mean and empirical variance: a deviation study , 2010, 1009.2048.

[34]  Emmanuel Boissard Simple Bounds for the Convergence of Empirical and Occupation Measures in 1-Wasserstein Distance , 2011, 1103.3188.

[35]  G. Pflug,et al.  The 1/ N investment strategy is optimal under high model ambiguity , 2012 .

[36]  David Wozabal,et al.  A framework for optimization under ambiguity , 2012, Ann. Oper. Res..

[37]  Zhaolin Hu,et al.  Kullback-Leibler divergence constrained distributionally robust optimization , 2012 .

[38]  Anthony Man-Cho So,et al.  Ambiguous probabilistic programs , 2013 .

[39]  F. Hollander,et al.  The parabolic Anderson model in a dynamic random environment: space-time ergodicity for the quenched Lyapunov exponent , 2013, Probability Theory and Related Fields.

[40]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.

[41]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[42]  Daniel Kuhn,et al.  Robust Data-Driven Dynamic Programming , 2013, NIPS.

[43]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[44]  David Wozabal,et al.  Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach , 2014, Oper. Res..

[45]  He Zhang,et al.  Models and algorithms for distributionally robust least squares problems , 2013, Mathematical Programming.

[46]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[47]  Chaoyue Zhao,et al.  Data-driven risk-averse stochastic program and renewable energy integration , 2014 .

[48]  Stephen P. Boyd,et al.  Block splitting for distributed optimization , 2013, Mathematical Programming Computation.

[49]  Vishal Gupta,et al.  Robust SAA , 2014 .

[50]  Jean-Philippe Vial,et al.  Deriving robust counterparts of nonlinear uncertain inequalities , 2012, Math. Program..

[51]  G. Lugosi,et al.  Empirical risk minimization for heavy-tailed losses , 2014, 1406.2462.

[52]  Dimitri P. Bertsekas,et al.  Convex Optimization Algorithms , 2015 .

[53]  Ruiwei Jiang,et al.  Data-driven chance constrained stochastic program , 2015, Mathematical Programming.

[54]  Daniel Kuhn,et al.  A comment on “computational complexity of stochastic programming problems” , 2016, Math. Program..

[55]  Bertrand Melenberg,et al.  Computationally Tractable Counterparts of Distributionally Robust Constraints on Risk Measures , 2014, SIAM Rev..

[56]  Marco Cuturi,et al.  On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests , 2015, Entropy.

[57]  Alexander Shapiro,et al.  Distributionally Robust Stochastic Programming , 2017, SIAM J. Optim..