A two-parameter family of complex Hadamard matrices of order 6 induced by hypocycloids

We construct a 2-parameter family of complex Hadamard matrices of order 6 by a natural block construction. We combine this family with an earlier result of Zauner to derive a 2-parameter family of triplets of mutually unbiased bases (MUBs) in ℂ 6 . This invalidates some numerical evidence given by Brierley and Weigert and sheds new light on the problem of determining the maximal number of MUBs in ℂ 6 .

[1]  Ferenc Szöllösi,et al.  Towards a Classification of 6 × 6 Complex Hadamard Matrices , 2008, Open Syst. Inf. Dyn..

[2]  P. Jaming,et al.  A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6 , 2009, 0902.0882.

[3]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[4]  Stefan Weigert,et al.  Maximal sets of mutually unbiased quantum states in dimension 6 , 2008, 0808.1614.

[5]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[6]  Akihiro Munemasa,et al.  Paires orthogonales de sous-algèbres involutives , 1992 .

[7]  Metod Saniga,et al.  Viewing sets of mutually unbiased bases as arcs in finite projective planes , 2005 .

[8]  Kyle Beauchamp,et al.  Orthogonal maximal abelian *-subalgebras of the 6×6 matrices , 2006 .

[9]  Ferenc Szöllösi,et al.  Constructions of Complex Hadamard Matrices via Tiling Abelian Groups , 2007, Open Syst. Inf. Dyn..

[10]  Terence Tao,et al.  Fuglede's conjecture is false in 5 and higher dimensions , 2003, math/0306134.

[11]  Wojciech Tadej,et al.  A Concise Guide to Complex Hadamard Matrices , 2006, Open Syst. Inf. Dyn..

[12]  Pawel Wocjan,et al.  New construction of mutually unbiased bases in square dimensions , 2005, Quantum Inf. Comput..

[13]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[14]  A. J. Skinner,et al.  Unbiased bases (Hadamards) for six-level systems : Four ways from Fourier , 2009 .

[15]  G. Björck Functions of Modulus 1 on Z n Whose Fourier Transforms Have Constant Modulus, and “CYCLIC n -ROOTS” , 1990 .

[16]  S. Brierley,et al.  Constructing Mutually Unbiased Bases in Dimension Six , 2009, 0901.4051.

[17]  A. Munemasa,et al.  Orthogonal pairs of ‐subalgebras and association schemes , 1991 .

[18]  Ferenc Szöllsi Parametrizing complex Hadamard matrices , 2008 .

[19]  P. Dita,et al.  Some results on the parametrization of complex Hadamard matrices , 2004 .

[20]  K. Horadam Hadamard Matrices and Their Applications , 2006 .