Mining Metagenomic Datasets for Cellulases

[1]  Alan J. McCarthy,et al.  The Fibrobacteres: an Important Phylum of Cellulose-Degrading Bacteria , 2012, Microbial Ecology.

[2]  J. McDonald,et al.  Methods for the isolation of cellulose-degrading microorganisms. , 2012, Methods in enzymology.

[3]  M. Podar,et al.  Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. , 2011, Trends in biotechnology.

[4]  E. Bayer,et al.  Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis , 2011, Proceedings of the National Academy of Sciences.

[5]  L. Fraissinet-Tachet,et al.  Metatranscriptomics Reveals the Diversity of Genes Expressed by Eukaryotes in Forest Soils , 2012, PloS one.

[6]  J.-X. Feng,et al.  Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens , 2009, Journal of applied microbiology.

[7]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[8]  Y. Kamagata,et al.  Discovery of Glycoside Hydrolase Enzymes in an Avicel-Adapted Forest Soil Fungal Community by a Metatranscriptomic Approach , 2013, PloS one.

[9]  D. Rigden,et al.  Mining metagenomic data for novel domains: BACON, a new carbohydrate‐binding module , 2010, FEBS Letters.

[10]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[11]  H. Schüttler,et al.  Cellulose hydrolysis in evolving substrate morphologies I: A general modeling formalism , 2009, Biotechnology and bioengineering.

[12]  S. Voget,et al.  Characterization of a metagenome-derived halotolerant cellulase. , 2006, Journal of biotechnology.

[13]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[14]  T. Urich,et al.  Archaea predominate among ammonia-oxidizing prokaryotes in soils , 2006, Nature.

[15]  L. Lo Leggio,et al.  Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components , 2011, Proceedings of the National Academy of Sciences.

[16]  Bernard Henrissat,et al.  Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. , 2006, Protein engineering, design & selection : PEDS.

[17]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[18]  Harry J. Gilbert,et al.  Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. , 2010, Annual review of biochemistry.

[19]  O. Shoseyov,et al.  Carbohydrate Binding Modules: Biochemical Properties and Novel Applications , 2006, Microbiology and Molecular Biology Reviews.

[20]  I. S. Pretorius,et al.  Microbial Cellulose Utilization: Fundamentals and Biotechnology , 2002, Microbiology and Molecular Biology Reviews.

[21]  Natalia N. Ivanova,et al.  Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite , 2007, Nature.

[22]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[23]  B. Henrissat,et al.  A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants , 1998, FEBS letters.

[24]  J. Gilbert,et al.  Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities , 2008, PloS one.

[25]  J. McDonald,et al.  Metagenomic approaches to the discovery of cellulases. , 2012, Methods in enzymology.

[26]  B. Henrissat,et al.  Structures and mechanisms of glycosyl hydrolases. , 1995, Structure.

[27]  B. Synstad,et al.  Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides , 2006, Proceedings of the National Academy of Sciences.