Rigorous model-based safety analysis for nonlinear continuous-time systems

Abstract A method is presented for the quantitative, model-based safety analysis of nonlinear continuous-time hybrid systems. This method uses the region-transition-model (RTM) framework of [Huang, H., Adjiman, C. S., & Shah, N. (2002). Quantitative framework for reliable safety analysis. AIChE Journal, 48, 78–96], together with a recently developed technique [Lin, Y., & Stadtherr, M. A. (2007). Validated solutions of initial value problems for parametric ODEs. Applied Numerical Mathematics, 57, 1145–1162] for the rigorous global analysis of nonlinear, continuous-time systems with uncertain initial conditions and/or parameters. Given an operating region described by bounds on possible initial conditions, inputs and model parameters, and a finite time horizon, the method can determine which operating subregions lead to safe operation. Numerical examples are presented that demonstrate the effectiveness of the method. This approach can supplement and complement the more qualitative techniques that are widely used for hazard identification and safety analysis.

[1]  Venkat Venkatasubramanian,et al.  PHASuite: An Automated HAZOP Analysis Tool for Chemical Processes , 2005 .

[2]  N. Nedialkov,et al.  Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .

[3]  Martin Berz,et al.  Efficient Control of the Dependency Problem Based on Taylor Model Methods , 1999, Reliab. Comput..

[4]  Venkat Venkatasubramanian,et al.  Safety verification using a hybrid knowledge‐based mathematical programming framework , 1998 .

[5]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[6]  Daniel A. Crowl,et al.  Chemical Process Safety: Fundamentals with Applications , 2001 .

[7]  Paul I. Barton,et al.  Optimization of hybrid systems , 2006, Comput. Chem. Eng..

[8]  Youdong Lin,et al.  Enclosing all solutions of two-point boundary value problems for ODEs , 2008, Comput. Chem. Eng..

[9]  Venkat Venkatasubramanian,et al.  PHASUITE: AN AUTOMATED HAZOP ANALYSIS TOOL FOR CHEMICAL PROCESSES Part I: Knowledge Engineering Framework , 2005 .

[10]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..

[11]  Martin Berz,et al.  5. Remainder Differential Algebras and Their Applications , 1996 .

[12]  Paul I. Barton,et al.  Modeling of combined discrete/continuous processes , 1994 .

[13]  M. Stadtherr,et al.  Deterministic global optimization of nonlinear dynamic systems , 2007 .

[14]  George F. Corliss,et al.  Validating an A Priori Enclosure Using High-Order Taylor Series , 2007 .

[15]  René Alt,et al.  10th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN'2002 , 2003, Reliab. Comput..

[16]  Nilay Shah,et al.  Quantitative framework for reliable safety analysis , 2002 .

[17]  Martin Berz,et al.  Computational differentiation : techniques, applications, and tools , 1996 .

[18]  Nedialko S. Nedialkov,et al.  On Taylor Model Based Integration of ODEs , 2007, SIAM J. Numer. Anal..

[19]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[20]  P. I. Barton,et al.  Implicit model checking of logic‐based control systems , 1997 .

[21]  A. Neumaier Interval methods for systems of equations , 1990 .

[22]  Arnold Neumaier,et al.  Taylor Forms—Use and Limits , 2003, Reliab. Comput..

[23]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[24]  Nilay Shah,et al.  A case study in hybrid process safety verification , 1996 .

[25]  Edmund M. Clarke,et al.  Automatic verification of sequential control systems using temporal logic , 1992 .

[26]  M. Stadtherr,et al.  Validated solutions of initial value problems for parametric ODEs , 2007 .

[27]  V. Venkatasubramanian,et al.  A PERSPECTIVE ON INTELLIGENT SYSTEMS FOR PROCESS HAZARDS ANALYSIS , 1996 .

[28]  V. D. Dimitriadis,et al.  Modeling and safety verification of discrete/continuous processing systems , 1997 .

[29]  M. Stadtherr,et al.  Deterministic Global Optimization for Parameter Estimation of Dynamic Systems , 2006 .

[30]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[31]  Martin Berz,et al.  Verified global optimization with Taylor model based range bounders , 2005 .

[32]  M. Berz,et al.  TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .

[33]  Nilay Shah,et al.  Integrating knowledge-based and mathematical programming approaches for process safety verification , 1997 .

[34]  Youdong Lin,et al.  Guaranteed State and Parameter Estimation for Nonlinear Continuous-Time Systems with Bounded-Error Measurements , 2007 .

[35]  John D. Pryce,et al.  Interval Arithmetic with Containment Sets , 2006, Computing.

[36]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..