Plasmids and Rickettsial Evolution: Insight from Rickettsia felis

Background The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. Methodology/Principal Findings Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFδ, is an artifact of the original genome assembly. Conclusion/Significance Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial tree.

[1]  Jean-Michel Claverie,et al.  Reductive Genome Evolution from the Mother of Rickettsia , 2007, PLoS genetics.

[2]  M. Waldor,et al.  A dynamic, mitotic-like mechanism for bacterial chromosome segregation. , 2006, Genes & development.

[3]  Deborah Hix,et al.  PATRIC: The VBI PathoSystems Resource Integration Center , 2006, Nucleic Acids Res..

[4]  J. Claverie,et al.  Impact of the excision of an ancient repeat insertion on Rickettsia conorii guanylate kinase activity. , 2006, Molecular biology and evolution.

[5]  H. Engelberg-Kulka,et al.  Bacterial Programmed Cell Death and Multicellular Behavior in Bacteria , 2006, PLoS genetics.

[6]  M. Quail,et al.  Phylogenetic Relationships of the Wolbachia of Nematodes and Arthropods , 2006, PLoS pathogens.

[7]  Samuel I. Miller,et al.  Type IV pili‐mediated secretion modulates Francisella virulence , 2006, Molecular microbiology.

[8]  M. Bidochka,et al.  Developing insect models for the study of current and emerging human pathogens. , 2006, FEMS microbiology letters.

[9]  M. S. Hunter,et al.  The emerging diversity of Rickettsia , 2006, Proceedings of the Royal Society B: Biological Sciences.

[10]  Daniel Fischer,et al.  On the origin of microbial ORFans: quantifying the strength of the evidence for viral lateral transfer , 2006, BMC Evolutionary Biology.

[11]  L. Foil,et al.  Rickettsia felis from Cat Fleas: Isolation and Culture in a Tick-Derived Cell Line , 2006, Applied and Environmental Microbiology.

[12]  A. van der Ende,et al.  Plasmid Diversity in Neisseriae , 2006, Infection and Immunity.

[13]  K. M. Nicks,et al.  A plasmid-cured Chlamydia muridarum strain displays altered plaque morphology and reduced infectivity in cell culture. , 2006, Microbiology.

[14]  Jean-Michel Claverie,et al.  Genome Sequence of Rickettsia bellii Illuminates the Role of Amoebae in Gene Exchanges between Intracellular Pathogens , 2006, PLoS genetics.

[15]  M. Hattori,et al.  Genome sequence of the cat pathogen, Chlamydophila felis. , 2006, DNA research : an international journal for rapid publication of reports on genes and genomes.

[16]  Angela C. M. Luyf,et al.  Compositional discordance between prokaryotic plasmids and host chromosomes , 2006, BMC Genomics.

[17]  J. Claverie,et al.  Rickettsia felis, from Culture to Genome Sequencing , 2005, Annals of the New York Academy of Sciences.

[18]  D. Raoult,et al.  Phylogenic Analysis of Rickettsial Patatin‐like Protein with Conserved Phospholipase A2 Active Sites , 2005, Annals of the New York Academy of Sciences.

[19]  Lode Wyns,et al.  Toxin-antitoxin modules as bacterial metabolic stress managers. , 2005, Trends in biochemical sciences.

[20]  A. Madan,et al.  New Perspectives on Rickettsial Evolution from New Genome Sequences of Rickettsia, particularly R. canadensis, and Orientia tsutsugamushi , 2005, Annals of the New York Academy of Sciences.

[21]  A. Godzik,et al.  Convergent evolution as a mechanism for pathogenic adaptation. , 2005, Trends in microbiology.

[22]  Korine S. E. Ung,et al.  Evidence of a Large Novel Gene Pool Associated with Prokaryotic Genomic Islands , 2005, PLoS genetics.

[23]  Peter F. Hallin,et al.  Genome update: sigma factors in 240 bacterial genomes. , 2005, Microbiology.

[24]  V. Popov,et al.  Expression of the Rickettsia prowazekii pld or tlyC Gene in Salmonella enterica Serovar Typhimurium Mediates Phagosomal Escape , 2005, Infection and Immunity.

[25]  O. White,et al.  Transposition Pathovars in Genes Involved in Virulence 1448 A Reveals Divergence among pv . phaseolicola Pseudomonas syringae Whole-Genome Sequence Analysis of , 2005 .

[26]  J. Claverie,et al.  The Genome Sequence of Rickettsia felis Identifies the First Putative Conjugative Plasmid in an Obligate Intracellular Parasite , 2005, PLoS biology.

[27]  S. Andersson,et al.  Functional divergence and horizontal transfer of type IV secretion systems. , 2005, Molecular biology and evolution.

[28]  B. Barrell,et al.  The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. , 2005, Genome research.

[29]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[30]  N. Moran,et al.  Evolutionary Origins of Genomic Repertoires in Bacteria , 2005, PLoS biology.

[31]  Matt Nolan,et al.  Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. A. Pickett,et al.  The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. , 2005, Microbiology.

[33]  K. Gerdes,et al.  Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes , 2005, Nucleic acids research.

[34]  J. Claverie,et al.  The 1.2-Megabase Genome Sequence of Mimivirus , 2004, Science.

[35]  C. Buchrieser,et al.  Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity , 2004, Nature Genetics.

[36]  Brendan W. Wren,et al.  Invertebrates as a source of emerging human pathogens , 2004, Nature Reviews Microbiology.

[37]  M. Gerstein,et al.  Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes , 2004, Genome Biology.

[38]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[39]  H. Matsuda,et al.  Biased biological functions of horizontally transferred genes in prokaryotic genomes , 2004, Nature Genetics.

[40]  S. Ren,et al.  Characterization of a novel toxin-antitoxin module, VapBC, encoded by Leptospira interrogans chromosome , 2004, Cell Research.

[41]  Aidan Budd,et al.  Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome? , 2004, Genome Biology.

[42]  Gilbert Greub,et al.  Microorganisms Resistant to Free-Living Amoebae , 2004, Clinical Microbiology Reviews.

[43]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[44]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[45]  J. Klockgether,et al.  Sequence Analysis of the Mobile Genome Island pKLC102 of Pseudomonas aeruginosa C , 2004, Journal of bacteriology.

[46]  Jianzhi Zhang,et al.  Gene Sequence-Based Criteria for Identification of New Rickettsia Isolates and Description of Rickettsia heilongjiangensis sp. nov , 2003, Journal of Clinical Microbiology.

[47]  S. Yoshida,et al.  Virulence Conversion of Legionella pneumophila by Conjugal Transfer of Chromosomal DNA , 2003, Journal of bacteriology.

[48]  E. Cascales,et al.  The versatile bacterial type IV secretion systems , 2003, Nature Reviews Microbiology.

[49]  B. Appel,et al.  A cryptic plasmid of Yersinia enterocolitica encodes a conjugative transfer system related to the regions of CloDF13 Mob and IncX Pil. , 2003, Microbiology.

[50]  Finbarr Hayes,et al.  Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death, and Cell Cycle Arrest , 2003, Science.

[51]  D. Fomenko,et al.  Microcin C51 Plasmid Genes: Possible Source of Horizontal Gene Transfer , 2003, Antimicrobial Agents and Chemotherapy.

[52]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Claverie,et al.  Tropheryma whipplei Twist: a human pathogenic Actinobacteria with a reduced genome. , 2003, Genome research.

[54]  A. Azad,et al.  Pathogenic Rickettsiae as Bioterrorism Agents , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[55]  C. Fraser,et al.  Complete genome sequence of the Q-fever pathogen Coxiella burnetii , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  S. Salzberg,et al.  Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. , 2003, Nucleic acids research.

[57]  P. Mondon,et al.  Cryptococcus neoformans with a Mutation in the Tetratricopeptide Repeat-Containing Gene, CCN1, Causes Subcutaneous Lesions but Fails To Cause Systemic Infection , 2003, Infection and Immunity.

[58]  James R. Brown Ancient horizontal gene transfer , 2003, Nature Reviews Genetics.

[59]  Z. Peng,et al.  Consensus-derived structural determinants of the ankyrin repeat motif , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Alm,et al.  DNA Sequence and Mutational Analyses of the pVir Plasmid of Campylobacter jejuni 81-176 , 2002, Infection and Immunity.

[61]  M. Shimada,et al.  Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Takeshi Itoh,et al.  Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Artem Cherkasov,et al.  Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. , 2002, Genome research.

[64]  J. Dixon,et al.  Role of Yersinia Murine Toxin in Survival of Yersinia pestis in the Midgut of the Flea Vector , 2002, Science.

[65]  K. Matsuura,et al.  Phylogenetic Analysis of Spotted Fever Group Rickettsiae Isolated from Ticks in Japan , 2002, Microbiology and immunology.

[66]  J. Sexton,et al.  Type IVB Secretion by Intracellular Pathogens , 2002, Traffic.

[67]  C. Baron,et al.  Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes , 2002, Molecular microbiology.

[68]  T. Fukatsu,et al.  Novel Clade of Rickettsia spp. from Leeches , 2002, Applied and Environmental Microbiology.

[69]  M H Saier,et al.  Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. , 2001, Microbiology.

[70]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[71]  J. Weissenbach,et al.  Mechanisms of Evolution in Rickettsia conorii and R. prowazekii , 2001, Science.

[72]  Jorge E. Galán,et al.  Structural mimicry in bacterial virulence , 2001, Nature.

[73]  J. Werren,et al.  Rickettsia associated with male-killing in a buprestid beetle , 2001, Heredity.

[74]  P. Christie,et al.  Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines , 2001, Molecular microbiology.

[75]  A. Azad,et al.  Rickettsia felis: molecular characterization of a new member of the spotted fever group. , 2001, International journal of systematic and evolutionary microbiology.

[76]  T. Schwan,et al.  Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. , 2000, International journal of medical microbiology : IJMM.

[77]  B. J. Hinnebusch,et al.  Analyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdorferi linear and circular plasmids. , 2000, Genome research.

[78]  J. Bakken,et al.  ankA: an Ehrlichia phagocytophila Group Gene Encoding a Cytoplasmic Protein Antigen with Ankyrin Repeats , 2000, Infection and Immunity.

[79]  J. Stenos,et al.  The rickettsial outer-membrane protein A and B genes of Rickettsia australis, the most divergent rickettsia of the spotted fever group. , 2000, International journal of systematic and evolutionary microbiology.

[80]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[81]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[82]  J. Andersson,et al.  Insights into the evolutionary process of genome degradation. , 1999, Current opinion in genetics & development.

[83]  M Achtman,et al.  Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[84]  G. Blatch,et al.  The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[85]  E V Koonin,et al.  Rickettsiae and Chlamydiae: evidence of horizontal gene transfer and gene exchange. , 1999, Trends in genetics : TIG.

[86]  Ronald W. Davis,et al.  Comparative genomes of Chlamydia pneumoniae and C. trachomatis , 1999, Nature Genetics.

[87]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[88]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[89]  M. Couturier,et al.  Bacterial death by DNA gyrase poisoning. , 1998, Trends in microbiology.

[90]  C. Beard,et al.  Rickettsial pathogens and their arthropod vectors. , 1998, Emerging infectious diseases.

[91]  R. Isberg,et al.  Conjugative transfer by the virulence system of Legionella pneumophila. , 1998, Science.

[92]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[93]  N. Thomas,et al.  Plasmid diversity in Chlamydia. , 1997, Microbiology.

[94]  H. Willems,et al.  Plasmid-homologous sequences in the chromosome of plasmidless Coxiella burnetii Scurry Q217 , 1997, Journal of bacteriology.

[95]  H. Ochman,et al.  Amelioration of Bacterial Genomes: Rates of Change and Exchange , 1997, Journal of Molecular Evolution.

[96]  H. Engelberg-Kulka,et al.  An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[97]  T. Hackstadt The biology of rickettsiae. , 1996, Infectious agents and disease.

[98]  R. B. Jensen,et al.  Programmed cell death in bacteria: proteic plasmid stabilization systems , 1995, Molecular microbiology.

[99]  M. Yarmolinsky,et al.  Programmed cell death in bacterial populations , 1995, Science.

[100]  P. Fuerst,et al.  Ancestral divergence of Rickettsia bellii from the spotted fever and typhus groups of Rickettsia and antiquity of the genus Rickettsia. , 1994, International journal of systematic bacteriology.

[101]  E. Ohtsubo,et al.  chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100 , 1993, Journal of bacteriology.

[102]  T. Quan,et al.  A surface protease and the invasive character of plague. , 1992, Science.

[103]  T. Hatch,et al.  A chlamydial plasmid is differentially transcribed during the life cycle of Chlamydia trachomatis. , 1991, Plasmid.

[104]  A. Azad,et al.  Infection of colonized cat fleas, Ctenocephalides felis (Bouché), with a rickettsia-like microorganism. , 1990, The American journal of tropical medicine and hygiene.

[105]  L. Mallavia,et al.  Comparison of Coxiella burnetii Plasmids to Homologous Chromosomal Sequences Present in a Plasmidless Endocarditis‐Causing Isolate a , 1990, Annals of the New York Academy of Sciences.

[106]  C. Woese,et al.  Phylogenetic diversity of the Rickettsiae , 1989, Journal of bacteriology.

[107]  M. Lusher,et al.  Plasmid diversity within the genus Chlamydia. , 1989, Journal of general microbiology.

[108]  G. Schreiber,et al.  The nucleotide sequence and characterization of the relA gene of Escherichia coli. , 1988, The Journal of biological chemistry.

[109]  E. Peterson,et al.  Restriction endonuclease analysis of DNA from Chlamydia trachomatis biovars , 1988, Journal of clinical microbiology.

[110]  A. Herring,et al.  Distribution of plasmid sequences in avian and mammalian strains of Chlamydia psittaci. , 1988, Journal of general microbiology.

[111]  L. Campbell,et al.  Characterization of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization , 1987, Journal of Clinical Microbiology.

[112]  S. Falkow,et al.  A common plasmid of Chlamydia trachomatis. , 1986, Plasmid.

[113]  H. Caldwell,et al.  Molecular characterization of Chlamydia trachomatis and Chlamydia psittaci plasmids , 1986, Infection and immunity.

[114]  J. Samuel,et al.  Correlation of plasmid type and disease caused by Coxiella burnetii , 1985, Infection and immunity.

[115]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[116]  T. Hyypiä,et al.  Analysis and detection of chlamydial DNA. , 1984, Journal of general microbiology.

[117]  J. Samuel,et al.  Isolation and characterization of a plasmid from phase I Coxiella burnetii , 1983, Infection and immunity.

[118]  F. Hoppensteadt,et al.  Plasmid incompatibility. , 1978, Microbiological reviews.

[119]  S. Falkow,et al.  Uniform nomenclature for bacterial plasmids: a proposal , 1976, Bacteriological reviews.

[120]  M. Greenberg,et al.  Rickettsialpox-A Newly Recognized Rickettsial Disease : III. Epidemiology. , 1947, American journal of public health and the nation's health.

[121]  R. Huebner,et al.  Rickettsialpox, a newly recognized rickettsial disease; isolation of a Rickettsia apparently identical with the causative agent of rickettsialpox from Allodermanyssus sanguineus, a rodent mite. , 1946, Public health reports.

[122]  David A Fitzpatrick,et al.  Genome phylogenies indicate a meaningful alpha-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. , 2006, Molecular biology and evolution.

[123]  T. R. Licht,et al.  Conjugative Gene Transfer in the Gastrointestinal Environment. , 2005, Advances in applied microbiology.

[124]  M. Rajandream,et al.  Food for thought , 2005, Nature Reviews Microbiology.

[125]  Ian T. Paulsen,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv . tomato DC 3000 , 2003 .

[126]  M. Ullrich,et al.  Complete nucleotide sequence and analysis of pPSR1 (72,601 bp), a pPT23A-family plasmid from Pseudomonas syringae pv. syringae A2 , 2003, Molecular Genetics and Genomics.

[127]  D. Walker,et al.  Identification of Ctenocephalides felis fleas as a host of Rickettsia felis, the agent of a spotted fever rickettsiosis in Yucatań, Mexico. , 2002, Vector borne and zoonotic diseases.

[128]  J. Hacker,et al.  Pathogenicity islands and the evolution of microbes. , 2000, Annual review of microbiology.

[129]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[130]  H. Engelberg-Kulka,et al.  Addiction modules and programmed cell death and antideath in bacterial cultures. , 1999, Annual review of microbiology.

[131]  D. Raoult,et al.  International Conference on Bartonella as emerging pathogens , 1999 .

[132]  C. Kurland,et al.  The Rickettsia prowazekii genome: a random sequence analysis. , 1996, Microbial & comparative genomics.

[133]  P. Fuerst,et al.  Evolutionary Analysis of the Spotted Fever and Thyphus Groups of Rickettsia Using 16S rRNA Gene Sequences , 1995 .

[134]  M. Carl,et al.  Genetic characterization and transovarial transmission of a typhus-like rickettsia found in cat fleas. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[135]  W. Burgdorfer,et al.  Rickettsia bellii sp. nov.: a Tick-Borne Rickettsia, Widely Distributed in the United States, That Is Distinct from the Spotted Fever and Typhus Biogroups , 1983 .