Polarizability as a landmark property for fullerene chemistry and materials science

The review summarizes data on dipole polarizability of fullerenes and their derivatives, covering the most widespread classes of fullerene-containing molecules (fullerenes, fullerene exohedral derivatives, fullerene dimers, endofullerenes, fullerene ions, and derivatives with ionic bonds). These are currently presented by experimental and mainly theoretical works. Particular attention is paid to the analysis of the computational data in terms of additive schemes that assist in understanding the changes in polarizability upon fullerene functionalization and provide a general formula for calculation of polarizability for certain classes of the exohedral derivatives. Additionally, application of polarizability to the physical and chemical problems of fullerene science is discussed. It includes aspects of fullerene reactivity, physicochemical processes in carbon nanostructures (quenching of electronically-excited states, nanocapillarity, etc.) as well as use of fullerene adducts as electron-acceptor materials for organic solar cells and molecular switch devices.

[1]  J. Applequist,et al.  Polarizabilities of fullerenes C20 through C240 from atom monopole-dipole interaction theory , 1994 .

[2]  D. Gournis,et al.  Hopping Conductivity and Polarization Effects in a Fullerene Derivative Salt , 2014 .

[3]  S. Gerlich,et al.  Theory and experimental verification of Kapitza–Dirac–Talbot–Lau interferometry , 2009, 0902.0234.

[4]  Hao Sun,et al.  Thermochemical stabilities, electronic structures, and optical properties of C56X10 (X = H, F, and Cl) fullerene compounds , 2011, J. Comput. Chem..

[5]  Manthos G. Papadopoulos,et al.  Electronic and vibrational linear and nonlinear polarizabilities of Li@C60 and [Li@C60]+ , 2011, J. Comput. Chem..

[6]  Shaohua Huang,et al.  Regiochemistry of [70]fullerene: preparation of C70(OOtBu)n (n = 2, 4, 6, 8, 10) through both equatorial and cyclopentadienyl addition modes. , 2005, The Journal of organic chemistry.

[7]  K. Fujiwara,et al.  First synthesis of a highly symmetrical decakis-adduct of fullerene dimer C120. , 2001, Chemical communications.

[8]  J. Jellinek,et al.  Site-Specific Analysis of Dielectric Properties of Finite Systems† , 2007 .

[9]  M. L. Kuznetsov,et al.  Theoretical studies on [3+2]-cycloaddition reactions , 2006 .

[10]  E. Yagubskii,et al.  A complex of buckminsterfullerene with sulfur, C60·2S8: synthesis and crystal structure , 1994 .

[11]  D. Sabirov,et al.  General formula for accurate calculation of halofullerenes polarizability , 2012 .

[12]  Minghui Yang,et al.  Polarization response of methane encapsulated in water cages , 2013 .

[13]  D. Sh. Sabirov,et al.  Reactivity of fullerenes family towards radicals in terms of local curvature , 2011 .

[14]  DFT Study on Methanofullerene Derivative [6,6]-Phenyl-C61 Butyric Acid Methyl Ester , 2008 .

[15]  Barry P Rand,et al.  Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells , 2014, Nature Communications.

[16]  D. Ugarte,et al.  Nanocapillarity and Chemistry in Carbon Nanotubes , 1996, Science.

[17]  P. Lipkowski,et al.  Does the spatial confinement influence the electric properties and cooperative effects of the hydrogen bonded systems? HCN chains as a case study , 2014 .

[18]  M. V. Okun,et al.  Fullerenes in solutions , 1998 .

[19]  M. Halls,et al.  Carbon nanotube inner phase chemistry: the Cl- exchange SN2 reaction. , 2005, Nano letters.

[20]  I. Gubaydullin,et al.  Influence of the charge on the volumes of nanoscale cages (carbon and boron-nitride fullerenes, Ge9z− Zintl ions, and cubic Fe4S4 clusters) , 2013 .

[21]  Hao Sun,et al.  Electronic structures and nonlinear optical properties of highly deformed halofullerenes C3v C60F18 and D3d C60Cl30 , 2010, J. Comput. Chem..

[22]  Swapan K. Ghosh,et al.  A DENSITY FUNCTIONAL APPROACH TO HARDNESS, POLARIZABILITY, AND VALENCY OF MOLECULES IN CHEMICAL REACTIONS , 1996 .

[23]  A. Barron,et al.  Reaction of hydroxyfullerene with metal salts: a route to remediation and immobilization. , 2005, Journal of the American Chemical Society.

[24]  K. Mikkelsen,et al.  Microscopic and macroscopic polarization in C60 fullerene clusters as calculated by an electrostatic interaction model , 2004 .

[25]  D. Sabirov Polarizability of C60 fullerene dimer and oligomers: the unexpected enhancement and its use for rational design of fullerene-based nanostructures with adjustable properties , 2013 .

[26]  Fang Ma,et al.  Modulated Nonlinear Optical Responses and Charge Transfer Transition in Endohedral Fullerene Dimers Na@C60C60@F with n-Fold Covalent Bond (n = 1, 2, 5, and 6) and Long Range Ion Bond , 2010 .

[27]  Maurizio Prato,et al.  Fullerenes: multitask components in molecular machinery. , 2007, Angewandte Chemie.

[28]  E. Ōsawa,et al.  Nature of Cyclobutane Bonds in the Neutral [2+2] Dimer of C60 , 1997 .

[29]  C. Reed,et al.  Discrete fulleride anions and fullerenium cations. , 2000, Chemical reviews.

[30]  Yunlong Guo,et al.  Mobility of long-lived fullerene radical in solid state and nonlinear temperature dependence. , 2014, Journal of the American Chemical Society.

[31]  Anton O. Terentyev,et al.  Polarizability of fullerene [2+2]-dimers: a DFT study. , 2014, Physical chemistry chemical physics : PCCP.

[32]  S. Khursan,et al.  Ozone addition to C60 and C70 fullerenes: a DFT study. , 2008, Journal of molecular graphics & modelling.

[33]  M. Saunders,et al.  Mechanochemical Synthesis and Characterization of the Fullerene Dimer C120 , 1998 .

[34]  F. Torrens CORRIGENDUM: Effect of type, size and deformation on the polarizability of carbon nanotubes from atomic increments , 2006 .

[35]  Xing Lu,et al.  Current status and future developments of endohedral metallofullerenes. , 2012, Chemical Society reviews.

[36]  K. Mikkelsen,et al.  The static polarizability and second hyperpolarizability of fullerenes and carbon nanotubes , 2004 .

[37]  Benedict,et al.  Static polarizabilities of single-wall carbon nanotubes. , 1995, Physical review. B, Condensed matter.

[38]  B. Kirtman,et al.  Electronic structure, bonding, spectra, and linear and nonlinear electric properties of Ti@C28. , 2011, The journal of physical chemistry. A.

[39]  Francisco Torrens,et al.  Molecular polarizability of Scn, Cn and endohedral Scn@Cm clusters , 2002 .

[40]  Z. Z. Latypov,et al.  Determining conditions for the preparation of polymer films containing an ordered structure of carbon nanotubes and higher fullerenes , 2006 .

[41]  Francisco Torrens,et al.  Molecular polarizability of Sc n , C n and endohedral Sc n @C m clusters , 2000 .

[42]  K. Lips,et al.  N@C60 and P@C60 as quantum bits , 2004 .

[43]  A. Chepelianskii,et al.  Low-temperature transport properties of photogenerated charges in organic materials. , 2014, Physical review letters.

[44]  D. Troya,et al.  A theoretical study of the ozonolysis of C60: primary ozonide formation, dissociation, and multiple ozone additions. , 2014, Physical chemistry chemical physics : PCCP.

[45]  T. Umeyama,et al.  Design and control of organic semiconductors and their nanostructures for polymer–fullerene-based photovoltaic devices , 2014 .

[46]  P. Dugourd,et al.  Structure of nano-objects through polarizability and dipole measurements , 2002 .

[47]  T. Umeyama,et al.  Effects of dihydronaphthyl-based [60]fullerene bisadduct regioisomers on polymer solar cell performance. , 2012, Chemical communications.

[48]  Anton O. Terentyev,et al.  Inverted thermochemistry of “norbornadiene–quadricyclane” molecular system inside fullerene nanocages , 2014 .

[49]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[50]  Hans-Jörg Schneider,et al.  Binding mechanisms in supramolecular complexes. , 2009, Angewandte Chemie.

[51]  Simon C. Benjamin,et al.  The N@C-60 nuclear spin qubit: Bang-bang decoupling and ultrafast phase gates , 2006 .

[52]  K. Akhtari,et al.  First hyperpolarizability orientation in [70]PCBM isomers: A DFT study , 2014 .

[53]  S. Gerlich,et al.  A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules , 2007, 0802.3287.

[54]  M. Karelson,et al.  QSPR Modeling of the Polarizability of Polyaromatic Hydrocarbons and Fullerenes , 2008 .

[55]  Denis Sh Sabirov,et al.  Density functional theory study on the decay of fullerenyl radicals RC60•, ROC60•, and ROOC60• (R = tert-butyl and cumyl) and polarizability of the formed fullerene dimers. , 2013, The journal of physical chemistry. A.

[56]  M. Bossi,et al.  Photomodulation of macroscopic properties , 2011 .

[57]  R. Zope The static dipole polarizability of C70 fullerene , 2007, 0711.1885.

[58]  Dmitrij Rappoport,et al.  Property-optimized gaussian basis sets for molecular response calculations. , 2010, The Journal of chemical physics.

[59]  H. Hermann,et al.  Contribution of nuclear displacements to the static polarizability of molecules in an external electric field: Application to fluorinated fullerenes C 60 F n , 2006 .

[60]  A. A. Peyghan,et al.  Structural and electronic properties of pyrrolidine-functionalized [60]fullerenes , 2013 .

[61]  MV Suyetin,et al.  Nanocapsule for Safe and Effective Methane Storage , 2009, Nanoscale research letters.

[62]  Chunmei Tang,et al.  Density functional study on the electronic properties, polarizabilities, NICS values, and absorption spectra of fluorinated fullerene derivative C60F17CF3 , 2012 .

[63]  H. Lamparczyk,et al.  Determination of average molecular polarizabilities of polycyclic aromatic hydrocarbons directly from retention indices , 1981 .

[64]  J. Segura,et al.  [60]Fullerene dimers , 2000 .

[65]  A. Kolomeisky,et al.  Unidirectional Rolling Motion of Nanocars Induced by Electric Field , 2012 .

[66]  J. Tour,et al.  Directional control in thermally driven single-molecule nanocars. , 2005, Nano letters.

[67]  Chia-Chung Sun,et al.  Perfluorinated exohedral potassium-metallofullerene K···CnFn (n = 20 or 60): partial interior and surface excess electron state , 2010 .

[68]  W Andreoni,et al.  Computational approach to the physical chemistry of fullerenes and their derivatives. , 1998, Annual review of physical chemistry.

[69]  P. Petelenz,et al.  Mechanism for effective polarizability enhancement in molecular crystals: C60 , 2004 .

[70]  Sean E. Shaheen,et al.  Pathways to a New Efficiency Regime for Organic Solar Cells , 2012 .

[71]  Bumjoon J. Kim,et al.  Effects of Solubilizing Group Modification in Fullerene Bis-Adducts on Normal and Inverted Type Polymer Solar Cells , 2012 .

[72]  V. Subramanian,et al.  Thermo Neutral SN2 Reaction within Pristine and Stone–Wales Defective BNNTs and CNTs , 2013 .

[73]  U. Hohm Is There a Minimum Polarizability Principle in Chemical Reactions , 2000 .

[74]  A. Krasheninnikov,et al.  Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. , 2011, Nano letters.

[75]  Jacopo Tomasi,et al.  Geometry optimization of molecular structures in solution by the polarizable continuum model , 1998 .

[76]  Ruhong Zhou,et al.  Large scale molecular simulations of nanotoxicity , 2014, Wiley interdisciplinary reviews. Systems biology and medicine.

[77]  Y. Murata,et al.  Surgery of fullerenes. , 2008, Chemical communications.

[78]  M. Pederson,et al.  Polarizabilities, charge states, and vibrational modes of isolated fullerene molecules. , 1992, Physical review. B, Condensed matter.

[79]  K. Nakamoto,et al.  Electronic structures and spectral properties of endohedral fullerenes , 2005 .

[80]  H. Mizuseki,et al.  Excess polarizabilities upon the first dipole‐allowed excitation of some conjugated oligomers , 2008 .

[81]  A. Stefanov,et al.  Polarizability measurements of a molecule via a near-field matter-wave interferometer , 2007, quant-ph/0701179.

[82]  H. Ågren,et al.  Electric and magnetic properties of fullerenes , 1998 .

[83]  E. Ruckenstein,et al.  Endohedral chemistry of C60-based fullerene cages. , 2005, Journal of the American Chemical Society.

[84]  Xiaojun Li,et al.  Structures, electronic properties, and nonlinear optical properties of Ce/Dy-encapsulated C20-glycine: a density-functional theory investigation , 2013, Structural Chemistry.

[85]  Yongqin Wei,et al.  Dipole polarizabilities of trimetallic nitride endohedral fullerenes M3N@C2n (M = Sc and Y; 2n = 68–98) , 2009 .

[86]  Yongfang Li,et al.  Effects of Fullerene Bisadduct Regioisomers on Photovoltaic Performance , 2014 .

[87]  Marcel Swart,et al.  Reactivity and regioselectivity of noble gas endohedral fullerenes Ng@C(60) and Ng(2)@C(60) (Ng=He-Xe). , 2009, Chemistry.

[88]  O. Shishkin,et al.  On Hartree–Fock Dipole Polarizabilities of Molecules, Ions, and Defects in Dunning's Basis Sets , 2001 .

[89]  A. Otero-de-la-Roza,et al.  Carbon Nanotube Chirality Determines Efficiency of Electron Transfer to Fullerene in All-Carbon Photovoltaics , 2013 .

[90]  S. L. Khursan,et al.  1,3-Dipolar addition reactions to fullerenes: the role of the local curvature of carbon surface , 2008 .

[91]  Y. Kotake,et al.  Stabilities and reactivities of buckminsterfullerene radicals, (ButO)nC60˙, towards dioxygen, nitric oxide and spin trapping agents , 1996 .

[92]  Broyer,et al.  Polarizability of KC60: evidence for potassium skating on the C60 surface , 2000, Physical review letters.

[93]  Q. Sun,et al.  Electric field enhanced hydrogen storage on polarizable materials substrates , 2010, Proceedings of the National Academy of Sciences.

[94]  Jin-ming Dong,et al.  Exciton effects on the optical properties of the substituted fullerenes C59X (X = B, N) , 1997 .

[95]  P. Dugourd,et al.  Direct measurement of the electric polarizability of isolated C60 molecules , 1999 .

[96]  B. Champagne,et al.  Vibrational polarizability of polyacetylene chains , 1994 .

[97]  A. Ferretti,et al.  Static and Field-Oriented Properties of Bowl-Shaped Polynuclear Aromatic Hydrocarbon Fragments. , 2013, Journal of chemical theory and computation.

[98]  M. Pederson,et al.  Static dielectric response of icosahedral fullerenes from C 60 to C 2160 characterized by an all-electron density functional theory , 2008, 0801.4433.

[99]  Xin Wang,et al.  The density functional calculations on the structural stability, electronic properties, and static linear polarizability of the endohedral metallofullerene Ba@C74 , 2008 .

[100]  Francisco Torrens,et al.  Molecular polarizability of fullerenes and endohedral metallofullerenes , 2002 .

[101]  D. Sabirov,et al.  Polarizability of C70 Fullerene Derivatives C70X8 and C70X10 , 2012 .

[102]  C. Surko,et al.  Dependence of positron–molecule binding energies on molecular properties , 2009 .

[103]  S. Nagase,et al.  X-ray observation of a helium atom and placing a nitrogen atom inside He@C60 and He@C70 , 2013, Nature Communications.

[104]  M. Bao,et al.  NaOH-catalyzed dimerization of monofunctionalized hydrofullerenes: transition-metal-free, general, and efficient synthesis of single-bonded [60]fullerene dimers. , 2012, Organic letters.

[105]  Roberto Zanasi,et al.  Electric and magnetic properties of the aromatic sixty-carbon cage , 1990 .

[106]  A. Jen,et al.  Functional fullerenes for organic photovoltaics , 2012 .

[107]  A. Hirsch,et al.  Water-soluble malonic acid derivatives of C60 with a defined three-dimensional structure , 1994 .

[108]  M. Kappes,et al.  Extraction and Chromatographic Elution Behavior of Endohedral Metallofullerenes: Inferences Regarding Effective Dipole Moments , 1996 .

[109]  J. Nelson,et al.  Energetic Disorder in Higher Fullerene Adducts: A Quantum Chemical and Voltammetric Study , 2010, Advanced materials.

[110]  R. Lyubovskaya,et al.  Donor?acceptor complexes and radical ionic salts based on fullerenes , 1999 .

[111]  D. Bradley,et al.  Triplet Formation in Fullerene Multi‐Adduct Blends for Organic Solar Cells and Its Influence on Device Performance , 2010 .

[112]  Electric dipole moment and charge transfer in alkali-C molecules , 2000 .

[113]  Denis Sh. Sabirov,et al.  Anisotropy of Polarizability of Fullerene Higher Adducts for Assessing the Efficiency of Their Use in Organic Solar Cells , 2013 .

[114]  K. Deng,et al.  Density Functional Study of Two Seven-Membered Unconventional Fullerenes C58F17CF3 and C58F18 , 2010 .

[115]  D. Sabirov,et al.  New property of the fullerenes: the anomalously effective quenching of electronically excited states owing to energy transfer to the C70 and C60 molecules , 2007 .

[116]  Y. Dappe Encapsulation of organic molecules in carbon nanotubes: role of the van der Waals interactions , 2014 .

[117]  U. Dzhemilev,et al.  A new approach to the estimation of the fullerene reactivity in 1,3-dipolar addition based on polarizability indices , 2009 .

[118]  M. Wong,et al.  Nanoscale Aggregation Properties of Neuroprotective Carboxyfullerene (C3) in Aqueous Solution , 2004 .

[119]  S. Avdoshenko,et al.  Theoretical study of isomerization mechanisms in fluorinated fullerene derivatives. , 2009, The journal of physical chemistry. A.

[120]  Z. Mazej,et al.  The former "C60F16" is actually a double-caged adduct: (C60F16)(C60). , 2007, Chemical communications.

[121]  A. Shestakov Reactivity of fullerene C60 , 2008 .

[122]  D. Pullman,et al.  Quantitative structure-property relationships for longitudinal, transverse, and molecular static polarizabilities in polyynes. , 2008, The journal of physical chemistry. B.

[123]  C. Cramer,et al.  Reduced and quenched polarizabilities of interior atoms in molecules , 2013 .

[124]  Xin Xu,et al.  A theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n,n) armchair single-wall carbon nanotubes. , 2003, Journal of the American Chemical Society.

[125]  R. Weisman,et al.  Fullerene Oxides and Ozonides , 2006 .

[126]  S. Minakata,et al.  The ionic introduction of an N1 unit to C60 and a unique rearrangement of aziridinofullerene. , 2008, Chemical communications.

[127]  A. Misra,et al.  Use of polarizability and chemical hardness to locate the transition state and the potential energy curve for double proton transfer reaction: A DFT based study , 2012 .

[128]  E. Ōsawa,et al.  The evolution of the football structure for the C60 molecule: a retrospective , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[129]  E. Fileti,et al.  Structure, stability, depolarized light scattering, and vibrational spectra of fullerenols from all-electron density-functional-theory calculations , 2009 .

[130]  S. Patil,et al.  Alkali atoms confined to a sphere and to a fullerene cage , 2005 .

[131]  A. Thakkar,et al.  How often is the minimum polarizability principle violated , 2013 .

[132]  Sergey A. Maksimenko,et al.  Study of the polarizability of fullerenes with a monopole-dipole interaction model , 2007 .

[133]  D. Tománek,et al.  Quantum size effects in the polarizability of carbon fullerenes. , 2004, Physical review letters.

[134]  D. Jelski,et al.  A Computational Study of the Combinatorial Addition of Oxygen to Buckminsterfullerene , 2001 .

[135]  Z. Su,et al.  The encapsulated lithium effect of Li@C60Cl8 remarkably enhances the static first hyperpolarizability , 2013 .

[136]  Broughton,et al.  Nanocapillarity in fullerene tubules. , 1992, Physical review letters.

[137]  Xiulian Pan,et al.  The effects of confinement inside carbon nanotubes on catalysis. , 2011, Accounts of chemical research.

[138]  S. Bachilo,et al.  Ozonides, epoxides, and oxidoannulenes of C(70). , 2002, Journal of the American Chemical Society.

[139]  A. G. Avent,et al.  Fluorine takes a hike: remarkable room-temperature rearrangement of the C1 isomer of C60F36 into the C3 isomer via a 1,3-fluorine shift. , 2002, Chemical communications.

[140]  Z. Soos,et al.  Electron-transfer in molecular functional materials , 2007 .

[141]  D. Cox,et al.  Structures of C60 intercalation compounds , 1992 .

[142]  Evgeniy Yu. Pankratyev,et al.  How reliable are GIAO calculations of 1H and 13C NMR chemical shifts? A statistical analysis and empirical corrections at DFT (PBE/3z) level , 2011, J. Comput. Chem..

[143]  He Tian,et al.  Recent progresses on diarylethene based photochromic switches. , 2004, Chemical Society reviews.

[144]  Gotthard Seifert,et al.  D5h C50 Fullerene: A Building Block for Oligomers and Solids? , 2004 .

[145]  M. Halls,et al.  Chemistry Inside Carbon Nanotubes: the Menshutkin SN2 Reaction , 2002 .

[146]  D. Sabirov,et al.  Polarizability of oxygen-containing fullerene derivatives С60Оn and С70О with epoxide/oxidoannulene moieties , 2011 .

[147]  O. Nerushev,et al.  Anomalous polarizability of fullerene , 1993 .

[148]  S. Hati,et al.  Hardness and Electric Dipole Polarizability. Atoms and Clusters , 1994 .

[149]  K. Mikkelsen,et al.  Frequency-Dependent Polarizability of Boron Nitride Nanotubes: A Theoretical Study , 2001 .

[150]  D. Troya,et al.  Reaction Probability and Infrared Detection of the Primary Ozonide in Collisions of O3 with Surface-Bound C60. , 2012, The journal of physical chemistry letters.

[151]  1H and 13C NMR chemical shift assignments of spiro‐cycloalkylidenehomo‐ and methanofullerenes by the DFT–GIAO method , 2011, Magnetic resonance in chemistry : MRC.

[152]  G. Seifert,et al.  Molecular design of fullerene‐based ultralow‐k dielectrics , 2006 .

[153]  Alexander B. Sieval,et al.  Electron Trapping in Higher Adduct Fullerene‐Based Solar Cells , 2009 .

[154]  A. Thakkar A hierarchy for additive models of polarizability , 2012 .

[155]  A. Alparone,et al.  Validation of semiempirical PM6 method for the prediction of molecular properties of polycyclic aromatic hydrocarbons and fullerenes , 2008 .

[156]  Shuqing Sun,et al.  Recent progress in the studies of endohedral metallofullerenes , 2000 .

[157]  Chunru Wang,et al.  Addition of carbene to the equator of C(70) to produce the most stable C(71)H(2) isomer: 2 aH-2(12)a-homo(C(70)-D(5h(6)))[5,6]fullerene. , 2010, Angewandte Chemie.

[158]  Marcel Swart,et al.  The reactivity of endohedral fullerenes. What can be learnt from computational studies? , 2011, Physical chemistry chemical physics : PCCP.

[159]  J. Louderback,et al.  Absolute measurement of the optical polarizability of C60 , 2000 .

[160]  D. Sabirov,et al.  Reactivity of Fullerene Derivatives C60O and C60F18 (C 3v ) in Terms of Local Curvature and Polarizability , 2010 .

[161]  A. Okotrub,et al.  Influence of defects in the carbon network on the static polarizability of fullerenes , 2009 .

[162]  H. Schlegel,et al.  Static and Dynamic Polarizabilities of Conjugated Molecules and Their Cations , 2004 .

[163]  Fu-He Wang,et al.  Density functional calculations of the polarizability and second-order hyperpolarizability of C~5~0Cl~1~0 (5 pages) , 2005 .

[164]  F. Calvo,et al.  Electric Dipoles and Susceptibilities of Alkali Clusters/Fullerene Complexes : Experiments and Simulations , 2007 .

[165]  P. Gennes Wetting: statics and dynamics , 1985 .

[166]  Xiao-Yuan Ren,et al.  Structural and electron properties of the highest epoxygenated fullerene C(60)O(30), a DFT study. , 2007, Journal of molecular graphics & modelling.

[167]  M. A. Yurovskaya,et al.  The formation of [5,6]- and [6,6]-open fulleroid structures , 2007 .

[168]  K. Mikkelsen,et al.  Saturation of the Third-Order Polarizability of Carbon Nanotubes Characterized by a Dipole Interaction Model , 2003 .

[169]  D. Ugarte,et al.  Filling carbon nanotubes , 1998 .

[170]  D. Sabirov,et al.  Dependence of static polarizabilities of C60Xn fullerene cycloadducts on the number of added groups X = CH2 and NH (n = 1–30) , 2012 .

[171]  J. Morton,et al.  Photoisomerization of a fullerene dimer , 2008 .

[172]  Chunmei Tang,et al.  How will the dichlophenyl group affect the geometric structure, electronic properties, and static linear polarizability of La@C72? , 2009 .

[173]  C. Reed,et al.  Crystal engineering a linear polymer of C60 fullerene via supramolecular pre-organization , 2000 .

[174]  T. Baruah,et al.  Dipole polarizability of isovalent carbon and boron cages and fullerenes , 2009 .

[175]  Walter Thiel,et al.  Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: dependence on the carbon-atom pyramidalization. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[176]  James C. Greer,et al.  C60 as a Faraday cage , 2004 .

[177]  A. Mohajeri,et al.  Density Functional Theory Study on the Static Dipole Polarizability of Boron Nitride Nanotubes: Single Wall and Coaxial Systems , 2014 .

[178]  Jill E. Gready,et al.  Finite-field method calculations. III. Dipole moment gradients, polarisability gradients and field-induced shifts in bond lengths, vibrational levels, , 1977 .

[179]  M. Saunders,et al.  Putting atoms and molecules into chemically opened fullerenes. , 2009, Journal of the American Chemical Society.

[180]  Marcel Mayor,et al.  Quantum interference of large organic molecules , 2011, Nature communications.

[181]  U. Dzhemilev,et al.  Oxidation of fullerenes with ozone , 2013, Russian Chemical Bulletin.

[182]  W. Liang,et al.  Theoretical studies on the geometrical and electronic structures of N-methyle-3,4-fulleropyrrolidine , 2008 .

[183]  M. Tzirakis,et al.  Radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology. , 2013, Chemical reviews.

[184]  Patrizia Calaminici,et al.  Static and dynamic polarizability of C540 fullerene , 2012 .

[185]  G. Scuseria,et al.  Analytically Calculated Polarizability of Carbon Nanotubes: Single Wall, Coaxial, and Bundled Systems , 2008 .

[186]  Rajendra R. Zope,et al.  Electronic structure and static dipole polarizability of C60@C240 , 2008 .

[187]  N. Yevlampieva,et al.  Polar and Electrooptical Properties of [60]Fullerene-Containing Poly(benzyl ether) Dendrimers in Solution , 2007 .

[188]  Jorge Rafael León-Carmona,et al.  On the chemical behavior of C60 hosting H2O and other isoelectronic neutral molecules , 2014, Journal of Molecular Modeling.

[189]  S. Shaik,et al.  Oriented electric fields accelerate Diels-Alder reactions and control the endo/exo selectivity. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[190]  O. Motapon,et al.  Static and dynamic dipole polarizabilities and electron density at origin: Ground and excited states of hydrogen atom confined in multiwalled fullerenes , 2011 .

[191]  L. Tsetseris Stability of Group-V Endohedral Fullerenes , 2011 .

[192]  S. G. Semenov,et al.  A quantum chemical study of silsesquioxanes: H8Si8O12, Me8Si8O12, H@Me8Si8O12, He@Me8Si8O12+, and He@Me8Si8O12 , 2013, Journal of Structural Chemistry.

[193]  Bryon W. Larson,et al.  Thermal [6,6] → [6,6] Isomerization and Decomposition of PCBM (Phenyl-C61-butyric Acid Methyl Ester) , 2014 .

[194]  L. Gan,et al.  Preparation of Open‐Cage Fullerenes and Incorporation of Small Molecules Through Their Orifices , 2010, Advanced materials.

[195]  P. Dugourd,et al.  Electric polarizability of isolated C 70 molecules , 2001 .

[196]  Xiaolei Zhu,et al.  Exploration of the origin of large first hyperpolarizabilities of trisaza-bridged (36) fulleroids , 2011, Journal of molecular modeling.

[197]  Carlo Thilgen,et al.  Structural aspects of fullerene chemistry--a journey through fullerene chirality. , 2006, Chemical reviews.

[198]  A. Vlandas,et al.  Controlling fullerene addition sequences, regioselectivity and magic numbers via metal encapsulation. , 2011, Chemical communications.

[199]  P. Dugourd,et al.  From clusters to biomolecules: electric dipole, structure and dynamics , 2007 .

[200]  Adams,et al.  Empirical bond polarizability model for fullerenes. , 1996, Physical review. B, Condensed matter.

[201]  D. Sabirov A correlation between the mean polarizability of the “kinked” polycyclic aromatic hydrocarbons and the number of H…H bond critical points predicted by Atoms-in-Molecules theory , 2014 .

[202]  A. Thakkar,et al.  Dipole polarizability, sum rules, mean excitation energies, and long-range dispersion coefficients for buckminsterfullerene C60 , 2011 .

[203]  D. Sabirov,et al.  Polarizability exaltation of endofullerenes X@Cn (n = 20, 24, 28, 36, 50, and 60; X is a noble gas atom) , 2010 .

[204]  I. Averbukh,et al.  Deflection of field-free aligned molecules. , 2009, Physical review letters.

[205]  Stephen R. Wilson,et al.  Trisamine C(60)-fullerene adducts inhibit neuronal nitric oxide synthase by acting as highly potent calmodulin antagonists. , 2002, Archives of biochemistry and biophysics.

[206]  M. Banerjee,et al.  Study of Molecular Complex Formation between [60]Fullerene and Two Series of Donors by the NMR Method , 2001 .

[207]  P. Lambin,et al.  Dipole polarizability of onion-like carbons and electromagnetic properties of their composites , 2008, Nanotechnology.

[208]  E. Ruckenstein,et al.  Bond order bond polarizability model for fullerene cages and nanotubes. , 2005, The Journal of chemical physics.

[209]  C. Pouchan,et al.  Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations , 2008 .

[210]  M. Nascimento,et al.  A new approach for designing molecules with large hyperpolarizabilities: substituted C36 fullerenes as a test case , 2001 .

[211]  Xin Wang,et al.  Dipole polarizabilities of noble gas endohedral fullerenes , 2008 .

[212]  A. Bottoni,et al.  Cl(−) Exchange SN2 Reaction inside Carbon Nanotubes: C–H···π and Cl···π Interactions Govern the Course of the Reaction , 2014 .

[213]  Tang Chun-mei,et al.  The stability, frontier orbitals, bond character, and static linear polarizability of the fluorinated fullerene H 20 @C 80 F 60 , 2010 .

[214]  D. Sabirov From Endohedral Complexes to Endohedral Fullerene Covalent Derivatives: A Density Functional Theory Prognosis of Chemical Transformation of Water Endofullerene H2O@C60 upon Its Compression , 2013 .

[215]  S. Ndengué,et al.  Electric response of endohedrally confined hydrogen atoms , 2008 .

[216]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[217]  F. Mota,et al.  Optical Properties and Quasiparticle Band Gaps of Transition-Metal Atoms Encapsulated by Silicon Cages , 2014 .

[218]  M. Kassaee,et al.  Silicon-carbon vs. carbon nanotubes at DFT: Aromaticity, polarizability, and structural network(s) at various lengths and widths , 2010 .