Bandgap and optical absorption edge of GaAs1−xBix alloys with 0 < x < 17.8%

The compositional dependence of the fundamental bandgap of pseudomorphic GaAs1−xBix layers on GaAs substrates is studied at room temperature by optical transmission and photoluminescence spectroscopies. All GaAs1−xBix films (0 ≤ x ≤ 17.8%) show direct optical bandgaps, which decrease with increasing Bi content, closely following density functional theory predictions. The smallest measured bandgap is 0.52 eV (∼2.4 μm) at 17.8% Bi. Extrapolating a fit to the data, the GaAs1−xBix bandgap is predicted to reach 0 eV at 35% Bi. Below the GaAs1−xBix bandgap, exponential absorption band tails are observed with Urbach energies 3–6 times larger than that of bulk GaAs. The Urbach parameter increases with Bi content up to 5.5% Bi, and remains constant at higher concentrations. The lattice constant and Bi content of GaAs1−xBix layers (0 < x ≤ 19.4%) are studied using high resolution x-ray diffraction and Rutherford backscattering spectroscopy. The relaxed lattice constant of hypothetical zincblende GaBi is estimated t...

[1]  Stephen J. Sweeney,et al.  Band engineering in dilute nitride and bismide semiconductor lasers , 2012, 1208.6441.

[2]  K. Oe,et al.  Lattice Distortion of GaAsBi Alloy Grown on GaAs by Molecular Beam Epitaxy , 2006 .

[3]  U. Tisch,et al.  The anomalous bandgap bowing in GaAsN , 2002 .

[4]  J. Zide,et al.  Temperature and Bi-concentration dependence of the bandgap and spin-orbit splitting in InGaBiAs/InP semiconductors for mid-infrared applications , 2012 .

[5]  J. David,et al.  Localization effects and band gap of GaAsBi alloys , 2014 .

[6]  W. Brantley Calculated elastic constants for stress problems associated with semiconductor devices , 1973 .

[7]  C. Tan,et al.  Demonstration of InAsBi photoresponse beyond 3.5 μm , 2014 .

[8]  M. Thomasset,et al.  Formation and vanishing of short range ordering in GaAs 1-x Bi x thin films , 2010 .

[9]  M. Mayer SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA , 1999 .

[10]  B. G. Brooks,et al.  Disorder and the Optical-Absorption Edge of Hydrogenated Amorphous Silicon , 1981 .

[11]  M. Missous Stoichiometric low temperature (SLT) GaAs and AlGaAs grown by molecular beam epitaxy , 1996 .

[12]  L. W. James,et al.  Bandgap and lattice constant of GaInAsP as a function of alloy composition , 1974 .

[13]  M. Koch,et al.  Clustering effects in Ga(AsBi) , 2010 .

[14]  T. Tiedje,et al.  Effects of spatial confinement and layer disorder in photoluminescence of GaAs1−xBix/GaAs heterostructures , 2013 .

[15]  T. Tiedje,et al.  Composition dependence of photoluminescence of GaAs1-xBix alloys , 2009 .

[16]  T. Jones,et al.  High Bi content GaSbBi alloys , 2014 .

[17]  Shane Johnson,et al.  Temperature dependence of the Urbach edge in GaAs , 1995 .

[18]  K. Köhler,et al.  Elastic constants and Poisson ratio in the system AlAs–GaAs , 1995 .

[19]  Guobin Liu,et al.  Optical gain of strained GaAsSb/GaAs quantum-well lasers: A self-consistent approach , 2000 .

[20]  Ryan B. Lewis,et al.  Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy , 2012 .

[21]  Alexandros Georgakilas,et al.  Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry , 2008 .

[22]  E. Palik,et al.  Optical Parameters for the Materials in HOC I and HOC II , 1997 .

[23]  A. Janotti,et al.  Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs , 2002 .

[24]  J. Zide,et al.  Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y , 2012 .

[25]  M. Capizzi,et al.  Compositional evolution of bi-induced acceptor states in gaas(1-x)bi(x) alloy , 2011 .

[26]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[27]  T. Tiedje,et al.  Disorder and the Urbach edge in dilute bismide GaAsBi , 2013 .

[28]  Wladek Walukiewicz,et al.  Valence-band anticrossing in mismatched III-V semiconductor alloys , 2007 .

[29]  P. Mooney,et al.  Closed cycle chiller as a low cost alternative to liquid nitrogen in molecular beam epitaxy , 2013 .

[30]  E. O’Reilly,et al.  Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs , 2011, 1111.4394.

[31]  J. H. Blokland,et al.  Compositional dependence of the exciton reduced mass in GaAs1-xBix (x=0-10%) , 2010 .

[32]  François Schiettekatte,et al.  Molecular beam epitaxy growth of GaAs1−xBix , 2003 .

[33]  Angelo Mascarenhas,et al.  Band gap of GaAs1−xBix, 0 , 2003 .

[34]  J. David,et al.  Absorption Characteristics of ${\rm GaAs}_{1-x}{\rm Bi}_{x}/{\rm GaAs}$ Diodes in the Near-Infrared , 2012, IEEE Photonics Technology Letters.