Conservative extensions in modal logic

Every normal modal logic L gives rise to the consequence relation ' |=L which holds if, and only if, is true in a world of an L-model whenever ' is true in that world. We consider the following al- gorithmic problem for L. Given two modal formulas '1 and '2, decide whether '1^'2 is a conservative extension of'1 in the sense that whenever '1 ^'2 |=L and does not contain propositional variables not occurring in '1, then '1 |=L. We first prove that the conservativeness problem is coNExpTime-hard for all modal logics of unbounded width (which have rooted frames with more than N successors of the root, for any N < !). Then we show that this problem is (i) coNExpTime-complete for S5 and K, (ii) in ExpSpace for S4 and (iii) ExpSpace-complete for GL.3 (the logic of finite strict linear orders). The proofs for S5 and K use the fact that these logics have uniform interpolants of exponential size.

[1]  Frank Wolter,et al.  Modal decision problems , 2007, Handbook of Modal Logic.

[2]  Dov M. Gabbay,et al.  Products of Modal Logics, Part 1 , 1998, Log. J. IGPL.

[3]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[4]  Andrew M. Pitts,et al.  On an interpretation of second order quantification in first order intuitionistic propositional logic , 1992, Journal of Symbolic Logic.

[5]  Richard S. Varga,et al.  Proof of Theorem 5 , 1983 .

[6]  Władysław Turski,et al.  The specification of computer programs , 1987 .

[7]  Silvio Ghilardi,et al.  Undefinability of propositional quantifiers in the modal system S4 , 1995, Stud Logica.

[8]  A. Visser Uniform interpolation and layered bisimulation , 1996 .

[9]  Willem Conradie,et al.  Definitorially Complete Description Logics , 2006, KR.

[10]  Michael Zakharyaschev,et al.  On the Products of Linear Modal Logics , 2001, J. Log. Comput..

[11]  M. deRijke Modal model theory , 1995 .

[12]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[13]  Athanasios Kehagias,et al.  A note on the refinement of ontologies , 2000 .

[14]  C. C. Chang Modal model theory , 1973 .

[15]  Silvio Ghilardi,et al.  An Algebraic Theory of Normal Forms , 1995, Ann. Pure Appl. Log..

[16]  Marcus Kracht,et al.  Modal consequence relations , 2007, Handbook of Modal Logic.

[17]  Carsten Lutz,et al.  Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.