Perfect MV-algebras are categorically equivalent to abelianl-groups
暂无分享,去创建一个
[1] Elliot Carl Weinberg,et al. Free lattice-ordered abelian groups. II , 1963 .
[2] W. M. Beynon. Duality Theorems for Finitely Generated Vector Lattices , 1975 .
[3] Salvatore Sessa,et al. Using maximal ideals in the classification of MV-algebras , 1993 .
[4] D. Mundici. Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .
[5] L. P. Belluce. Semisimple Algebras of Infinite Valued Logic and Bold Fuzzy Set Theory , 1986, Canadian Journal of Mathematics.
[6] W. M. Beynon. Applications of duality in the theory of finitely generated lattice-ordered abelian groups , 1977 .
[7] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[8] Daniele Mundici. Free products in the category of abelian l-groups with strong unit , 1988 .
[9] Yuichi Komori. Super-Łukasiewicz propositional logics , 1981, Nagoya Mathematical Journal.
[10] Stanley Burris,et al. A course in universal algebra , 1981, Graduate texts in mathematics.
[11] C. S. Hoo. MV-algebras, ideals and semisimplicity , 1989 .
[12] C. Chang,et al. A new proof of the completeness of the Łukasiewicz axioms , 1959 .