r-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments

We investigate $r$-process nucleosynthesis in three-dimensional general relativistic magnetohydrodynamic simulations of jet-driven supernovae resulting from rapidly rotating, strongly magnetized core-collapse. We explore the effect of misaligning the pre-collapse magnetic field with respect to the rotation axis by performing four simulations: one aligned model and models with 15, 30, and 45 degree misalignments. The simulations we present employ a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to post-bounce neutrino emission and absorption. We track the thermodynamic properties of the ejected material with Lagrangian tracer particles and analyse its composition with the nuclear reaction network SkyNet. By using different neutrino luminosities in post-processing the tracer data with SkyNet, we constrain the impact of uncertainties in neutrino luminosities. We find that, for the aligned model considered here, the use of an approximate leakage scheme results in neutrino luminosity uncertainties corresponding to a factor of 100-1000 uncertainty in the abundance of third peak $r$-process elements. Our results show that for misalignments of 30 degrees or less, $r$-process elements are robustly produced as long as neutrino luminosities are reasonably low ($\lesssim 5 \times 10^{52}$ erg s$^{-1}$). For a more extreme misalignment of 45 degrees, we find the production of $r$-process elements beyond the second peak significantly reduced. We conclude that robust $r$-process nucleosynthesis in magnetorotational supernovae requires a progenitor stellar core with a large poloidal magnetic field component that is at least moderately (within $\sim 30$ degrees) aligned with the rotation axis.

[1]  A. Casey,et al.  The Universality of the Rapid Neutron-capture Process Revealed by a Possible Disrupted Dwarf Galaxy Star , 2017, 1711.04776.

[2]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[3]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[4]  J. Lippuner,et al.  SkyNet: A Modular Nuclear Reaction Network Library , 2017, 1706.06198.

[5]  T. Takiwaki,et al.  The Intermediate r-process in Core-collapse Supernovae Driven by the Magneto-rotational Instability , 2016, 1611.02280.

[6]  M. Aloy,et al.  On the maximum magnetic field amplification by the magnetorotational instability in core-collapse supernovae , 2016, 1603.00466.

[7]  J. Simon,et al.  R-process enrichment from a single event in an ancient dwarf galaxy , 2015, Nature.

[8]  Erik Schnetter,et al.  A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae , 2015, Nature.

[9]  Friedrich-Karl Thielemann,et al.  THE r-PROCESS NUCLEOSYNTHESIS IN THE VARIOUS JET-LIKE EXPLOSIONS OF MAGNETOROTATIONAL CORE-COLLAPSE SUPERNOVAE , 2015, 1501.06567.

[10]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[11]  Tum,et al.  Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers , 2014, 1406.2687.

[12]  C. Ott,et al.  MAGNETOROTATIONAL CORE-COLLAPSE SUPERNOVAE IN THREE DIMENSIONS , 2014, 1403.1230.

[13]  Masaru Shibata,et al.  PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS , 2014, 1402.7317.

[14]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[15]  Erik Schnetter,et al.  GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit , 2013, 1304.5544.

[16]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[17]  Garching,et al.  SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS , 2013, 1302.6530.

[18]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[19]  C. Ott,et al.  Three-Dimensional General-Relativistic Hydrodynamic Simulations of Binary Neutron Star Coalescence and Stellar Collapse with Multipatch Grids , 2012, 1212.1191.

[20]  K. Hotokezaka,et al.  Mass ejection from the merger of binary neutron stars , 2012, 1212.0905.

[21]  Princeton,et al.  Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse , 2012, 1204.0512.

[22]  A. Perego,et al.  MAGNETOROTATIONALLY DRIVEN SUPERNOVAE AS THE ORIGIN OF EARLY GALAXY r-PROCESS ELEMENTS? , 2012, 1203.0616.

[23]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[24]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[25]  K. Kotake,et al.  GRAVITATIONAL WAVE SIGNATURES OF MAGNETOHYDRODYNAMICALLY DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS , 2010, 1004.2896.

[26]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[27]  Christian D. Ott,et al.  A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes , 2009, 0912.2393.

[28]  M. Aloy,et al.  Semi-global simulations of the magneto-rotational instability in core collapse supernovae , 2008, 0811.1652.

[29]  Jonathan C. McKinney,et al.  WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.

[30]  C. Ott,et al.  Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation , 2007, astro-ph/0702539.

[31]  Eli Livne,et al.  The Spin Periods and Rotational Profiles of Neutron Stars at Birth , 2005, astro-ph/0508462.

[32]  J. P. Laboratory,et al.  The Magnetorotational Instability in Core-Collapse Supernova Explosions , 2002, astro-ph/0208128.

[33]  James R. Wilson,et al.  Asymmetric Supernovae from Magnetocentrifugal Jets , 2001, astro-ph/0112020.

[34]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[35]  K. Langanke,et al.  Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range in supernovae environments , 2000, nucl-th/0001018.

[36]  S. Woosley,et al.  Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure , 1999, astro-ph/9904132.

[37]  James R. Wilson,et al.  The r-process and neutrino-heated supernova ejecta , 1994 .

[38]  Katsuhiko Sato,et al.  Rate tables for the weak processes of sd-shell nuclei in stellar matter , 1994 .

[39]  F. Swesty,et al.  A Generalized equation of state for hot, dense matter , 1991 .

[40]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[41]  W. Fowler,et al.  Stellar weak interaction rates for intermediate mass nuclei. III. Rate tables for the free nucleons and nuclei with A = 21 TO A = 60 , 1982 .

[42]  W. Arnett,et al.  Magnetohydrodynamic phenomena in collapsing stellar cores , 1976 .

[43]  Parampreet Singh,et al.  Classical and Quantum Gravity , 2015 .

[44]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[45]  J. M. Leblanc,et al.  A Numerical Example of the Collapse of a Rotating Magnetized Star , 1970 .