A 6.45 $\mu{\rm W}$ Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems

This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.

[1]  G. Cho,et al.  A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting , 2012, IEEE Journal of Solid-State Circuits.

[2]  David D. Wentzloff,et al.  A 116nW multi-band wake-up receiver with 31-bit correlator and interference rejection , 2013, Proceedings of the IEEE 2013 Custom Integrated Circuits Conference.

[3]  Yanqing Zhang,et al.  A custom processor for node and power management of a battery-less body sensor node in 130nm CMOS , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[4]  Refet Firat Yazicioglu,et al.  18.3 A multi-parameter signal-acquisition SoC for connected personal health applications , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[5]  Gabriel A. Rincón-Mora,et al.  An Accurate, Continuous, and Lossless Self-Learning CMOS Current-Sensing Scheme for Inductor-Based DC-DC Converters , 2007, IEEE Journal of Solid-State Circuits.

[6]  David D. Wentzloff,et al.  A 10mV-input boost converter with inductor peak current control and zero detection for thermoelectric energy harvesting , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[7]  David D. Wentzloff,et al.  5.4 A 32nW bandgap reference voltage operational from 0.5V supply for ultra-low power systems , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[8]  David D. Wentzloff,et al.  A 10 mV-Input Boost Converter With Inductor Peak Current Control and Zero Detection for Thermoelectric and Solar Energy Harvesting With 220 mV Cold-Start and $-$14.5 dBm, 915 MHz RF Kick-Start , 2015, IEEE Journal of Solid-State Circuits.

[9]  J. R. Moorman,et al.  Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. , 2011, American journal of physiology. Heart and circulatory physiology.

[10]  Fan Zhang,et al.  A Batteryless 19 $\mu$W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications , 2013, IEEE Journal of Solid-State Circuits.

[11]  Kai Strunz,et al.  A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting , 2010, IEEE Journal of Solid-State Circuits.

[12]  Benton H. Calhoun,et al.  A 150nW, 5ppm/o C, 100kHz On-Chip clock source for ultra low power SoCs , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[13]  Anantha Chandrakasan,et al.  A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting , 2012, 2012 IEEE International Solid-State Circuits Conference.

[14]  Yanqing Zhang,et al.  21.3 A 6.45μW self-powered IoT SoC with integrated energy-harvesting power management and ULP asymmetric radios , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[15]  David Blaauw,et al.  24.3 An implantable 64nW ECG-monitoring mixed-signal SoC for arrhythmia diagnosis , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[16]  David D. Wentzloff,et al.  A 300nW near-threshold 187.5–500 kHz programmable clock generator for ultra low power SoCs , 2015, 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[17]  Benton H. Calhoun,et al.  A 1.2µW SIMO energy harvesting and power management unit with constant peak inductor current control achieving 83–92% efficiency across wide input and output voltages , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[18]  Willis J. Tompkins,et al.  A Real-Time QRS Detection Algorithm , 1985, IEEE Transactions on Biomedical Engineering.