Lattice points in rational ellipsoids

We combine exponential sums, character sums and Fourier coefficients of automorphic forms to improve the best known upper bound for the lattice error term associated to rational ellipsoids.

[1]  B. W. Jones,et al.  The Arithmetic Theory of Quadratic Forms , 1950 .

[2]  The cubic moment of central values of automorphic L-functions , 1998, math/9810182.

[3]  W. Nowak On the lattice rest of a convex body in ℝs, II , 1985 .

[4]  Emil Grosswald,et al.  Representations of Integers as Sums of Squares , 1985 .

[5]  R. Schulze-Pillot Thetareihen positiv definiter quadratischer Formen , 1984 .

[6]  William Duke,et al.  Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids , 1990 .

[7]  Henryk Iwaniec,et al.  Topics in classical automorphic forms , 1997 .

[8]  V. Bykovskii A trace formula for the scalar product of Hecke series and its applications , 1998 .

[9]  D. R. Heath-Brown Lattice points in the sphere , 1999 .

[10]  W. Duke Hyperbolic distribution problems and half-integral weight Maass forms , 1988 .

[11]  Jonathan Hanke SOME RECENT RESULTS ABOUT (TERNARY) QUADRATIC FORMS , 2011 .

[12]  V. Blomer Uniform bounds for Fourier coefficients of theta-series with arithmetic applications , 2004 .

[13]  Henryk Iwaniec,et al.  On the Sphere Problem , 1995 .

[14]  G. Shimura,et al.  Modular Forms of Half Integral Weight , 1973 .

[15]  G. Harcos,et al.  A Burgess-like subconvex bound for twisted L-functions , 2007 .

[16]  C. Siegel,et al.  Uber Die Analytische Theorie Der Quadratischen Formen III , 1935 .

[17]  H. Iwaniec Fourier coefficients of modular forms of half-integral weight , 1987 .

[18]  Carlos Pastor,et al.  Lattice points in bodies of revolution II , 2017, Mathematische Nachrichten.

[19]  W. Müller Lattice Points in Large Convex Bodies , 1999 .

[20]  B. Cipra On the Niwa-Shintani theta-kernel lifting of modular forms , 1983, Nagoya Mathematical Journal.