The Model-Free Implied Volatility and Its Information Content

Britten-Jones and Neuberger (2000) derived a model-free implied volatility under the diffusion assumption. In this article, we extend their model-free implied volatility to asset price processes with jumps and develop a simple method for implementing it using observed option prices. In addition, we perform a direct test of the informational efficiency of the option market using the model-free implied volatility. Our results from the Standard & Poor's 500 index (SPX) options suggest that the model-free implied volatility subsumes all information contained in the Black--Scholes (B--S) implied volatility and past realized volatility and is a more efficient forecast for future realized volatility. Copyright 2005, Oxford University Press.

[1]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[2]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[3]  J. Hausman Specification tests in econometrics , 1978 .

[4]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[5]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[6]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[7]  K. French,et al.  Expected stock returns and volatility , 1987 .

[8]  P. Protter Stochastic integration and differential equations : a new approach , 1990 .

[9]  Hans R. Stoll,et al.  The Dynamics of Stock Index and Stock Index Futures Returns , 1990, Journal of Financial and Quantitative Analysis.

[10]  Campbell R. Harvey,et al.  S&P 100 Index Option Volatility , 1991 .

[11]  Matthew Richardson,et al.  Tests of financial models in the presence of overlapping observations , 1991 .

[12]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[13]  T. Day,et al.  Stock market volatility and the information content of stock index options , 1992 .

[14]  Campbell R. Harvey,et al.  Dividends and S&P 100 index option valuation , 1992 .

[15]  Campbell R. Harvey,et al.  Market volatility prediction and the efficiency of the S & P 100 index option market , 1992 .

[16]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[17]  Christopher G. Lamoureux,et al.  Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities , 1993 .

[18]  Bruno Dupire Pricing with a Smile , 1994 .

[19]  M. Rubinstein. Implied Binomial Trees , 1994 .

[20]  Philippe Jorion Predicting Volatility in the Foreign Exchange Market , 1995 .

[21]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[22]  F. Longstaff Option Pricing and the Martingale Restriction , 1995 .

[23]  Emanuel Derman,et al.  Implied Trinomial Tress of the Volatility Smile , 1996 .

[24]  Goldman,et al.  Implied Trinomial Trees of the Volatility Smile , 1996 .

[25]  Jeff Fleming,et al.  Implied volatility functions: empirical tests , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[26]  T. Bollerslev,et al.  Answering the Critics: Yes, Arch Models Do Provide Good Volatility Forecasts , 1997 .

[27]  J. Campa,et al.  Implied Exchange Rate Distributions: Evidence from OTC Option Markets , 1997 .

[28]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[29]  Olivier Ledoit,et al.  Relative Pricing of Options with Stochastic Volatility , 1998 .

[30]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[31]  Emanuel Derman,et al.  STOCHASTIC IMPLIED TREES: ARBITRAGE PRICING WITH STOCHASTIC TERM AND STRIKE STRUCTURE OF VOLATILITY , 1998 .

[32]  N. Prabhala,et al.  The relation between implied and realized volatility , 1998 .

[33]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[34]  Jeff Fleming The quality of market volatility forecasts implied by S&P 100 index option prices , 1998 .

[35]  Mark Rubinstein,et al.  Edgeworth Binomial Trees , 1998 .

[36]  Stephen Taylor,et al.  Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High Frequency Index Returns , 2000 .

[37]  Jens Carsten Jackwerth,et al.  Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review , 1999 .

[38]  J. C. Sosa On the informational content of implied volatility , 2000 .

[39]  Gurdip Bakshi,et al.  Pricing and hedging long-term options , 2000 .

[40]  Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High Frequency Index Returns , 2000 .

[41]  Mark Britten-Jones,et al.  Option Prices, Implied Price Processes, and Stochastic Volatility , 2000 .

[42]  J. Jackwerth,et al.  The Price of a Smile: Hedging and Spanning in Option Markets , 2001 .

[43]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[44]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[45]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[46]  N. Shephard,et al.  Realised power variation and stochastic volatility models , 2003 .

[47]  N. Prabhala,et al.  The Telescoping Overlap Problem in Options Data , 2001 .

[48]  Stephen L Taylor,et al.  Forecasting Currency Volatility: A Comparison of Implied Volatilities and AR(FI)MA Models , 2003 .

[49]  Wei Guan,et al.  Is implied volatility an informationally efficient and effective predictor of future volatility , 2002 .

[50]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[51]  N. Shephard Realized power variation and stochastic volatility models , 2003 .

[52]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[53]  P. Mykland,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[54]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[55]  Zhou Zhou,et al.  “A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data” , 2005 .