Complexity of the simplest phylogenetic estimation problem
暂无分享,去创建一个
Z. Yang | Ziheng Yang | Z Yang
[1] L. Cavalli-Sforza,et al. PHYLOGENETIC ANALYSIS: MODELS AND ESTIMATION PROCEDURES , 1967, Evolution; international journal of organic evolution.
[2] J. Felsenstein. CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.
[3] J. Huelsenbeck. Performance of Phylogenetic Methods in Simulation , 1995 .
[4] Ziheng Yang. Statistical Properties of the Maximum Likelihood Method of Phylogenetic Estimation and Comparison With Distance Matrix Methods , 1994 .
[5] Z. Yang,et al. How often do wrong models produce better phylogenies? , 1997, Molecular biology and evolution.
[6] T. Jukes. CHAPTER 24 – Evolution of Protein Molecules , 1969 .
[7] Joseph T. Chang,et al. Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. , 1996, Mathematical biosciences.
[8] J. S. Rogers,et al. On the consistency of maximum likelihood estimation of phylogenetic trees from nucleotide sequences. , 1997, Systematic biology.
[9] M. Newton,et al. Phylogenetic Inference for Binary Data on Dendograms Using Markov Chain Monte Carlo , 1997 .
[10] Peter Godfrey-Smith,et al. Reconstructing the Past: Parsimony, Evolution, and Inference , 1989 .
[11] M. Nei. Molecular Evolutionary Genetics , 1987 .
[12] J. Bull,et al. An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis , 1993 .
[13] A. Edwards,et al. Assessing molecular phylogenies , 1995, Science.
[14] B. Rannala,et al. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.
[15] J. Neyman. MOLECULAR STUDIES OF EVOLUTION: A SOURCE OF NOVEL STATISTICAL PROBLEMS* , 1971 .
[16] B. Efron,et al. Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[17] W. Bruno,et al. Topological bias and inconsistency of maximum likelihood using wrong models. , 1999, Molecular biology and evolution.
[18] A. Zharkikh,et al. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. , 1992, Molecular biology and evolution.
[19] Masatoshi Nei,et al. Assessing molecular phylogenies , 1995, Science.
[20] B. Efron,et al. Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[21] Nick Goldman,et al. MAXIMUM LIKELIHOOD TREES FROM DNA SEQUENCES: A PECULIAR STATISTICAL ESTIMATION PROBLEM , 1995 .