Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation

Abstract We describe the particle method in quantum mechanics which provides an exact scheme to calculate the time-dependent wavefunction from a single-valued continuum of determinstic trajectories where two spacetime points are linked by at most a single orbit. A natural language for the theory is offered by the hydrodynamic analogy, in which wave mechanics corresponds to the Eulerian picture and the particle theory to the Lagrangian picture. The Lagrangian model for the quantum fluid may be developed from a variational principle. The Euler–Lagrange equations imply a fourth-order nonlinear partial differential equation to calculate the trajectories of the fluid particles as functions of their initial coordinates using as input the initial wavefunction. The admissible solutions are those consistent with quasi-potential flow. The effect of the superposition principle is represented via a nonclassical force on each particle. The wavefunction is computed via the standard map between the Lagrangian coordinates and the Eulerian fields, which provides the analogue in this model of Huygens’ principle in wave mechanics. The method is illustrated by calculating the time-dependence of a free Gaussian wavefunction. The Eulerian and Lagrangian pictures are complementary descriptions of a quantum process in that they have associated Hamiltonian formulations that are connected by a canonical transformation. The de Broglie–Bohm interpretation, which employs the same set of trajectories, should not be conflated with the Lagrangian version of the hydrodynamic interpretation. The theory implies that the mathematical results of the de Broglie–Bohm model may be regarded as statements about quantum mechanics itself rather than about its interpretation.

[1]  I. Bialynicki-Birula,et al.  Vortex lines of the electromagnetic field , 2003, physics/0305012.

[2]  Y. Rylov Spin and wave function as attributes of ideal fluid , 1999 .

[3]  V. V. Pukhnachov,et al.  Evolution Equations and Lagrangian Coordinates , 1997 .

[4]  Dynamics of quantum trajectories in chaotic systems , 2003, quant-ph/0309083.

[5]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[6]  J. Griffin,et al.  Single-particle Schrödinger fluid. I. Formulation , 1977 .

[7]  L. Broglie Introduction à l'étude de la mécanique ondulatoire , 1930 .

[8]  Uniqueness of conserved currents in quantum mechanics , 2003, quant-ph/0305175.

[9]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[10]  Robert E. Wyatt,et al.  An arbitrary Lagrangian–Eulerian approach to solving the quantum hydrodynamic equations of motion: Equidistribution with “smart” springs , 2003 .

[11]  Chaotic causal trajectories: the role of the phase of stationary states , 2000 .

[12]  Deterministic chaos and the causal interpretation of quantum mechanics (Physics Letters A 201 (1995) 1) , 1996 .

[13]  T. Takabayasi Hydrodynamical Formalism of Quantum Mechanics and Aharonov-Bohm Effect , 1983 .

[14]  I. Banicescu,et al.  Accuracy studies of a parallel algorithm for solving the hydrodynamic formulation of the time-dependent Schrödinger equation , 2002 .

[15]  U. Schwengelbeck,et al.  Unified theory of Lyapunov exponents and a positive example of deterministic quantum chaos , 1995 .

[16]  Philip J. Morrison,et al.  Fluid element relabeling symmetry , 1996 .

[17]  Attila Askar,et al.  Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems , 1999 .

[18]  D. Bohm,et al.  COLLECTIVE TREATMENT OF LIQUID HELIUM. , 1967 .

[19]  R. Wyatt,et al.  Quantum wave packet dynamics with trajectories: Implementation with adaptive Lagrangian grids , 2000 .

[20]  E. Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[21]  Ljf Lambert Broer Generalised fluid dynamics and quantum mechanics , 1974 .

[22]  I. Bialynicki-Birula,et al.  Motion of vortex lines in quantum mechanics , 1999, quant-ph/9911007.

[23]  Askar,et al.  Solution of the quantum fluid dynamical equations with radial basis function interpolation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  M. Schönberg,et al.  On the hydrodynamical model of the quantum mechanics , 1954 .

[25]  E. Bittner,et al.  Estimating Bohm’s quantum force using Bayesian statistics , 2003 .

[26]  J. G. Muga,et al.  Arrival time in quantum mechanics , 2000 .

[27]  R. Wyatt,et al.  Quantum trajectory analysis of multimode subsystem-bath dynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Basil J. Hiley,et al.  Quantum interference and the quantum potential , 1979 .

[29]  D. Pines A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions , 1952 .

[30]  R. Parmenter,et al.  Chaotic causal trajectories associated with a single stationary state of a system of noninteracting particles , 1997 .

[31]  T. Takabayasi Relativistic Hydrodynamics of the Dirac Matter. Part I. General Theory , 1957 .

[32]  Farhard Faisal,et al.  DEFINITION OF LYAPUNOV EXPONENTS AND KS ENTROPY IN QUANTUM DYNAMICS , 1995 .

[33]  I. Banicescu,et al.  Transient Effect of a Free Particle Wave Packet in the Hydrodynamic Formulation of the Time-Dependent Schrödinger Equation , 2003 .

[34]  R. Parmenter,et al.  DETERMINISTIC CHAOS AND THE CAUSAL INTERPRETATION OF QUANTUM MECHANICS , 1995 .

[35]  P. Holland,et al.  Uniqueness of paths in quantum mechanics , 1999 .

[36]  A CANONICAL TRANSFORMATION RELATING THE LAGRANGIAN AND EULERIAN DESCRIPTION OF IDEAL HYDRODYNAMICS , 1981 .

[37]  B. Hiley The Undivided Universe , 1993 .

[38]  Edward A. Spiegel,et al.  Fluid dynamical form of the linear and nonlinear Schrödinger equations , 1980 .

[39]  R. L. Seliger,et al.  Variational principles in continuum mechanics , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  T. Takabayasi,et al.  On the Formulation of Quantum Mechanics associated with Classical Pictures , 1952 .

[41]  W. Pauli,et al.  Niels Bohr and the Development of Physics , 1955 .

[42]  J. Gillis,et al.  Variational principles in dynamics and quantum theory , 1956 .

[43]  C. Truesdell The Kinematics Of Vorticity , 1954 .

[44]  Robert E. Wyatt,et al.  Electronic transitions with quantum trajectories. II , 2001 .

[45]  P. Holland Causal interpretation of a system of two spin-12 particles , 1988 .

[46]  Grant J. Mathews,et al.  Relativistic Numerical Hydrodynamics , 2003 .

[47]  Skodje,et al.  Flux analysis, the correspondence principle, and the structure of quantum phase space. , 1989, Physical review. A, General physics.

[48]  G. D. Polavieja Exponential divergence of neighboring quantal trajectories. , 1996 .

[49]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[50]  F. Halbwachs,et al.  Théorie relativiste des Fluides à Spin , 1961 .

[51]  M. Pettini,et al.  Regular and chaotic quantum motions , 1996 .

[52]  Herschel Rabitz,et al.  Multidimensional wave packet dynamics within the fluid dynamical formulation of the Schrodinger equation , 1998 .

[53]  Jerome K. Percus,et al.  Analysis of Classical Statistical Mechanics by Means of Collective Coordinates , 1958 .

[54]  R. Wyatt,et al.  Quantum hydrodynamic analysis of decoherence: quantum trajectories and stress tensor , 2002 .

[55]  J. H. Weiner,et al.  Wave Packet Dynamics on Two-Dimensional Quadratic Potential Surfaces , 1971 .

[56]  P. Holland Geometry of dislocated de Broglie waves , 1987 .

[57]  Angelo Vulpiani,et al.  Lagrangian chaos: Transport, mixing and diffusion in fluids , 1991 .

[58]  P. Mazur,et al.  Hydrodynamics for an ideal fluid: Hamiltonian formalism and Liouville-equation , 1981 .

[59]  B. Deb,et al.  Densities, density-functionals and electron fluids , 1982 .

[60]  Canonical transformations and variational principles for fluid dynamics , 1984 .

[61]  R. Wyatt,et al.  Quantum Wave Packet Dynamics with Trajectories , 1999 .

[62]  P. Holland The Quantum Theory of Motion , 1993 .

[63]  Multidimensional quantum dynamics with trajectories: a novel numerical implementation of Bohmian mechanics , 2000 .

[64]  J. Hirschfelder The angular momentum, creation, and significance of quantized vortices , 1977 .

[65]  Carl Eckart,et al.  Variation Principles of Hydrodynamics , 1960 .

[66]  D. Sprung,et al.  Quantum chaos in terms of Bohm trajectories , 1999 .

[67]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[68]  D. del-Castillo-Negrete,et al.  Lagrangian chaos and Eulerian chaos in shear flow dynamics. , 2001, Chaos.

[69]  Jyun-Hwei Tsai,et al.  Monte Carlo simulation of symmetric and asymmetric double-gate MOSFETs using Bohm-based quantum correction , 2003 .

[70]  R. Jackiw Lectures on Fluid Dynamics , 2002 .

[71]  Toward a canonical-Hamiltonian and microscopic field theory of classical liquids , 2000 .

[72]  B. Kendrick A new method for solving the quantum hydrodynamic equations of motion , 2003 .

[73]  R. Salmon HAMILTONIAN FLUID MECHANICS , 1988 .

[74]  Quantum initial value representations using approximate Bohmian trajectories , 2003, quant-ph/0304012.

[75]  Y. Partom,et al.  Quantum Rate Theory for Solids. II. One-Dimensional Tunneling Effects , 1969 .

[76]  J. Herivel,et al.  The derivation of the equations of motion of an ideal fluid by Hamilton's principle , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[77]  Herschel Rabitz,et al.  Multivariate radial basis interpolation for solving quantum fluid dynamical equations , 2002 .

[78]  D. J. Benney,et al.  Selected papers of C.C. Lin , 1987 .

[79]  M. Jammer The philosophy of quantum mechanics , 1974 .

[80]  L. Jnossy Zum hydrodynamischen Modell der Quantenmechanik , 1962 .

[81]  Eric R. Bittner Quantum tunneling dynamics using hydrodynamic trajectories , 2000 .

[82]  J. Hirschfelder,et al.  Quantized vortices around wavefunction nodes. II , 1974 .

[83]  On the motion of a single particle near a nodal line in the de Broglie–Bohm interpretation of quantum mechanics , 2003 .

[84]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[85]  Implications of Lorentz covariance for the guidance equation in two-slit quantum interference , 2003, quant-ph/0302076.

[86]  Ioana Banicescu,et al.  Solving the hydrodynamic formulation of quantum mechanics: A parallel MLS method , 2001 .

[87]  Eric R. Bittner,et al.  Integrating the quantum Hamilton–Jacobi equations by wavefront expansion and phase space analysis , 2000 .

[88]  J. Ziman Quantum hydrodynamics and the theory of liquid helium , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[89]  Francis P. Bretherton,et al.  A note on Hamilton's principle for perfect fluids , 1970, Journal of Fluid Mechanics.

[90]  Robert E. Wyatt Quantum wavepacket dynamics with trajectories: wavefunction synthesis along quantum paths , 1999 .

[91]  R. Wyatt,et al.  A new method for wave packet dynamics: Derivative propagation along quantum trajectories , 2003 .

[92]  James T. Cushing,et al.  Bohmian mechanics and quantum theory: an appraisal , 1996 .

[93]  Z. Ahmed Unusual reflection from step barriers , 1996 .

[94]  N. Grün,et al.  Application of the trajectory method for the solution of the time-dependent Thomas-Fermi-Dirac equation to H++Ar collisions , 1992 .

[95]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[96]  Ljf Lambert Broer,et al.  Conversion from material to local coordinates as a canonical transformation , 1974 .

[97]  N. Grün,et al.  Trajectory method for the solution of the time-dependent Schrodinger equation in atomic physics and application to H+-H scattering , 1984 .