Toward a notion of canonical form for nonlinear systems
暂无分享,去创建一个
[1] A. Krener,et al. Nonlinear controllability and observability , 1977 .
[2] B. Molinari. Structural invariants of linear multivariable systems , 1978 .
[3] Thomas Kailath,et al. Linear Systems , 1980 .
[4] Sahjendra N. Singh. A modified algorithm for invertibility in nonlinear systems , 1981 .
[5] Arthur J. Krener,et al. Linearization by output injection and nonlinear observers , 1983 .
[6] A. Isidori. Nonlinear feedback, structure at infinity and the input-output linearization problem , 1984 .
[7] Henry Hermes. Canonical forms for nonlinear systems , 1984, The 23rd IEEE Conference on Decision and Control.
[8] A. Isidori. Control of Nonlinear Systems Via Dynamic State-Feedback , 1986 .
[9] Michel Fliess,et al. Nonlinear control theory and differential algebra , 1988 .
[10] J. Gauthier,et al. Bilinearization up to output injection , 1988 .
[11] M. Fliess,et al. Généralisation non linéaire de la forme canonique de commande et linéarisation par bouclage , 1989 .
[12] Michael Zeitz,et al. CANONICAL FORMS FOR NONLINEAR SYSTEMS , 1989 .
[13] Jessy W. Grizzle,et al. Rank invariants of nonlinear systems , 1989 .
[14] Michel Fliess,et al. Generalized controller canonical form for linear and nonlinear dynamics , 1990 .
[15] A. Schaft,et al. Mechanical Nonlinear Control Systems , 1990 .
[16] Claude H. Moog,et al. Some Canonical Properties of Nonlinear Systems , 1990 .
[17] M. Fliess,et al. Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.
[18] R. Marino,et al. Equivalence of Nonlinear Systems to Input-Output Prime Forms , 1994 .
[19] J. Gauthier,et al. Global time-varying linearization up to output injection , 1992 .
[20] Yufan Zheng,et al. A generalized state space decomposition of nonlinear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.
[21] Joachim Rudolph. Une forme canonique en bouclage quasi statique , 1993 .
[22] Claude H. Moog,et al. Disturbance decoupling for nonlinear systems: A unified approach , 1993, Kybernetika.