Toward a notion of canonical form for nonlinear systems

[1]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[2]  B. Molinari Structural invariants of linear multivariable systems , 1978 .

[3]  Thomas Kailath,et al.  Linear Systems , 1980 .

[4]  Sahjendra N. Singh A modified algorithm for invertibility in nonlinear systems , 1981 .

[5]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[6]  A. Isidori Nonlinear feedback, structure at infinity and the input-output linearization problem , 1984 .

[7]  Henry Hermes Canonical forms for nonlinear systems , 1984, The 23rd IEEE Conference on Decision and Control.

[8]  A. Isidori Control of Nonlinear Systems Via Dynamic State-Feedback , 1986 .

[9]  Michel Fliess,et al.  Nonlinear control theory and differential algebra , 1988 .

[10]  J. Gauthier,et al.  Bilinearization up to output injection , 1988 .

[11]  M. Fliess,et al.  Généralisation non linéaire de la forme canonique de commande et linéarisation par bouclage , 1989 .

[12]  Michael Zeitz,et al.  CANONICAL FORMS FOR NONLINEAR SYSTEMS , 1989 .

[13]  Jessy W. Grizzle,et al.  Rank invariants of nonlinear systems , 1989 .

[14]  Michel Fliess,et al.  Generalized controller canonical form for linear and nonlinear dynamics , 1990 .

[15]  A. Schaft,et al.  Mechanical Nonlinear Control Systems , 1990 .

[16]  Claude H. Moog,et al.  Some Canonical Properties of Nonlinear Systems , 1990 .

[17]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[18]  R. Marino,et al.  Equivalence of Nonlinear Systems to Input-Output Prime Forms , 1994 .

[19]  J. Gauthier,et al.  Global time-varying linearization up to output injection , 1992 .

[20]  Yufan Zheng,et al.  A generalized state space decomposition of nonlinear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[21]  Joachim Rudolph Une forme canonique en bouclage quasi statique , 1993 .

[22]  Claude H. Moog,et al.  Disturbance decoupling for nonlinear systems: A unified approach , 1993, Kybernetika.