Polarized optical absorption in carbon nanotubes: A symmetry-based approach

Using density functional theory results as input data into the tight binding method for induced representations (based on the line group symmetry concept) we calculate optical conductivity tensor for single wall carbon nanotubes. Optical transition matrix elements are calculated exactly, out of completely symmetry adapted Bloch eigenfunctions. The results obtained can improve optical spectroscopy method as single-wall carbon nanotubes macroscopic sample characterization tool.

[1]  H. Kataura,et al.  Determination of SWCNT diameters from the Raman response of the radial breathing mode , 2001 .

[2]  R. Smalley,et al.  Raman modes of metallic carbon nanotubes , 1998 .

[3]  D. Ugarte,et al.  Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties , 1995, Science.

[4]  R. R. Sharma General expressions for reducing the Slater-Koster linear combination of atomic orbitals integrals to the two-center approximation , 1979 .

[5]  Lucas,et al.  Computation of the ultraviolet absorption and electron inelastic scattering cross section of multishell fullerenes. , 1994, Physical review. B, Condensed matter.

[6]  Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy , 1999 .

[7]  I. Milošević,et al.  Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes , 1999 .

[8]  T. Ando,et al.  Aharonov-Bohm effect in carbon nanotubes , 1994 .

[9]  Daniel Sánchez-Portal,et al.  Ab initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes , 2002 .

[10]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[11]  U. Sandler,et al.  Phase transitions in fiber materials , 2000 .

[12]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[13]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[14]  T. Yamabe,et al.  PI -BAND CONTRIBUTION TO THE OPTICAL PROPERTIES OF CARBON NANOTUBES : EFFECTS OF CHIRALITY , 1998 .

[15]  Kuzmany,et al.  Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes , 2000, Physical review letters.

[16]  Nobutsugu Minami,et al.  Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy , 1999 .

[17]  Christian Thomsen,et al.  Electronic transitions in single-walled carbon nanotubes: A resonance Raman study , 2000 .

[18]  Hans Gommans,et al.  Polarized spectroscopy of aligned single-wall carbon nanotubes , 2000 .

[19]  Modified group projectors: tight-binding method , 2000, cond-mat/0004344.

[20]  L. Forró,et al.  Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes , 1996 .

[21]  S. Reich,et al.  Intensities of the Raman-active modes in single and multiwall nanotubes , 2001 .

[22]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[23]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[24]  C. Trautmann,et al.  Swelling effects in lithium fluoride induced by swift heavy ions , 2000 .

[25]  I. Milošević,et al.  Symmetry and lattices of single-wall nanotubes , 1999 .

[26]  H. Eschrig Readily computable expressions for LCAO two‐centre integrals over slater‐type orbitals with arbitrarily high quantum numbers , 1979 .

[27]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[28]  M. Terauchi,et al.  Electron Energy-Loss Spectra of Single-Shell Carbon Nanotubes , 1994 .

[29]  Andrew G. Rinzler,et al.  Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy , 2000 .

[30]  C. T. Chan,et al.  Properties of 4 Å carbon nanotubes from first-principles calculations , 2002 .

[31]  H. J. Liu,et al.  Polarized absorption spectra of single-walled 4 A carbon nanotubes aligned in channels of an AlPO(4)-5 single crystal. , 2001, Physical review letters.

[32]  Riichiro Saito,et al.  Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes , 2003 .

[33]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[34]  Walter A. Harrison,et al.  Electronic structure and the properties of solids , 1980 .

[35]  M. Knupfer,et al.  Detailed analysis of the mean diameter and diameter distribution of single-wall carbonnanotubes from their optical response , 2002, cond-mat/0204324.

[36]  Carbon nanotubes band assignation, topology, Bloch states, and selection rules , 2001, cond-mat/0105451.

[37]  Electro-optical properties of single-walled carbon nanotubes , 2002 .

[38]  Fermi level quantum numbers and secondary gap of conducting carbon nanotubes , 2000, cond-mat/0004347.

[39]  Y. Saito,et al.  Exciton Effects of Optical Transitions in Single-Wall Carbon Nanotubes. , 1999 .

[40]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.