Identification de modèles de rayonnement solaire en zone tropicale par critères d'information

RÉSUMÉ. L’objet de cet article est d’améliorer la connaissance du rayonnement solaire en zone tropicale à travers l’analyse des données de mesures d’irradiance au sol. Pour cela nous identifions, à l’aide de critères d’information, les distributions de probabilité introduites dans quelques modèles de génération de rayonnement solaire synthétique. Puis, nous validons les résultats à partir de différentes mesures et différents tests entre distributions issues des données réelles et celles synthétisées.

[1]  K.G.T. Hollands,et al.  A time series model for Kt with application to global synthetic weather generation , 1988 .

[2]  M. Collares-Pereira,et al.  Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices , 1988 .

[3]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[4]  H. Akaike A new look at the statistical model identification , 1974 .

[5]  John Boland,et al.  Time-series analysis of climatic variables , 1995 .

[6]  Chigueru Tiba,et al.  Analysis of monthly time series of solar radiation and sunshine hours in tropical climates , 2004 .

[7]  M. Muselli,et al.  Stochastic study of hourly total solar radiation in Corsica using a Markov model , 2000 .

[8]  L. Zarzalejo,et al.  A simple approach to the synthetic generation of solar irradiance time series with high temporal resolution , 2011 .

[9]  L. Wald,et al.  On the applicability of the Heliosat-2 method to assess surface solar irradiance in the Intertropical Convergence Zone, French Guiana , 2013 .

[10]  Gerald Stanhill,et al.  Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences , 2001 .

[11]  David Pozo-Vázquez,et al.  Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artifi , 2011 .

[12]  Miguel P. Amado,et al.  Towards Solar Urban Planning: A New Step for Better Energy Performance , 2012 .

[13]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[14]  A. Miguel,et al.  Test Reference Year Generation and Evaluation Methods in the Continental Mediterranean Area , 2004 .

[15]  Christian Olivier,et al.  Law recognitions by information criteria for the statistical modeling of small scale fading of the radio mobile channel , 2013, Signal Process..

[16]  M. Collares-Pereira,et al.  TAG: A time-dependent, autoregressive, Gaussian model for generating synthetic hourly radiation , 1992 .

[17]  Marc Hallin,et al.  Order Selection, Stochastic Complexity and Kullback-Leibler Information , 1996 .

[18]  Soteris A. Kalogirou,et al.  Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system , 2008 .

[19]  Clifford W. Hansen,et al.  Statistical criteria for characterizing irradiance time series. , 2010 .

[20]  A. Louche,et al.  IMPROVED PROCEDURE FOR STAND-ALONE PHOTOVOLTAIC SYSTEMS SIZING USING METEOSAT SATELLITE IMAGES , 1998 .