A fourth order product integration rule by using the generalized Euler-Maclaurin summation formula

Abstract The present paper deals with a variant of the generalized Euler–Maclaurin summation formula for the product integration rule. The main idea lies on introducing a mesh associated with the integral of the square root of the weight function. We construct the set of nodes and implement it for approximating the considered integrals. It is shown theoretically that the proposed quadrature rule is of fourth order. The results of the provided numerical examples confirm the theoretical prediction. Moreover, applications of the suggested scheme for approximating some real test problems such as weakly singular integrals, including a particular case of the Fermi–Dirac integral, are investigated.

[1]  Paul Sablonnière,et al.  Product integration methods based on discrete spline quasi-interpolants and application to weakly singular integral equations , 2010, J. Comput. Appl. Math..

[2]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[3]  P. González-Vera,et al.  Properties of certain piecewise polynomial product integration rules , 1996 .

[4]  Xiaoping Zhang,et al.  The superconvergence of the composite midpoint rule for the finite-part integral , 2010, J. Comput. Appl. Math..

[5]  Mujeeb ur Rehman,et al.  A quadrature method for numerical solutions of fractional differential equations , 2017, Appl. Math. Comput..

[6]  Vladimir Rokhlin,et al.  Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .

[7]  J. N. Lyness,et al.  Numerical quadrature and asymptotic expansions , 1967 .

[8]  A. Rohatgi,et al.  Re‐evaluation of the derivatives of the half order Fermi integrals , 1993 .

[9]  Xiaoping Zhang,et al.  The adaptive composite trapezoidal rule for Hadamard finite-part integrals on an interval , 2017, J. Comput. Appl. Math..

[10]  J. C. Santos-León Asymptotic expansions for trapezoidal type product integration rules , 1998 .

[11]  Jin Li,et al.  The trapezoidal rule for computing supersingular integral on interval , 2012, Appl. Math. Comput..

[12]  Grzegorz Rzadkowski,et al.  An extension of trapezoidal type product integration rules , 2009, J. Comput. Appl. Math..

[13]  Mahdi Heidari,et al.  Solving linear integral equations of the second kind with repeated modified trapezoid quadrature method , 2007, Appl. Math. Comput..

[14]  Dongjie Liu,et al.  The superconvergence of the Newton-Cotes rule for Cauchy principal value integrals , 2010, J. Comput. Appl. Math..

[15]  Jin Li,et al.  The extrapolation methods based on Simpson's rule for computing supersingular integral on interval , 2017, Appl. Math. Comput..

[16]  F. Toutounian,et al.  Numerical solution of weakly singular Fredholm integral equations via generalization of the Euler–Maclaurin summation formula , 2014 .

[17]  Jean-Paul Berrut,et al.  A circular interpretation of the Euler-Maclaurin formula , 2006 .

[18]  Israel Navot,et al.  A Further Extension of the Euler-Maclaurin Summation Formula , 1962 .

[19]  Richard Weiss,et al.  Asymptotic Expansions for Product Integration , 1973 .