A fourth order product integration rule by using the generalized Euler-Maclaurin summation formula
暂无分享,去创建一个
[1] Paul Sablonnière,et al. Product integration methods based on discrete spline quasi-interpolants and application to weakly singular integral equations , 2010, J. Comput. Appl. Math..
[2] Bradley K. Alpert,et al. Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..
[3] P. González-Vera,et al. Properties of certain piecewise polynomial product integration rules , 1996 .
[4] Xiaoping Zhang,et al. The superconvergence of the composite midpoint rule for the finite-part integral , 2010, J. Comput. Appl. Math..
[5] Mujeeb ur Rehman,et al. A quadrature method for numerical solutions of fractional differential equations , 2017, Appl. Math. Comput..
[6] Vladimir Rokhlin,et al. Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .
[7] J. N. Lyness,et al. Numerical quadrature and asymptotic expansions , 1967 .
[8] A. Rohatgi,et al. Re‐evaluation of the derivatives of the half order Fermi integrals , 1993 .
[9] Xiaoping Zhang,et al. The adaptive composite trapezoidal rule for Hadamard finite-part integrals on an interval , 2017, J. Comput. Appl. Math..
[10] J. C. Santos-León. Asymptotic expansions for trapezoidal type product integration rules , 1998 .
[11] Jin Li,et al. The trapezoidal rule for computing supersingular integral on interval , 2012, Appl. Math. Comput..
[12] Grzegorz Rzadkowski,et al. An extension of trapezoidal type product integration rules , 2009, J. Comput. Appl. Math..
[13] Mahdi Heidari,et al. Solving linear integral equations of the second kind with repeated modified trapezoid quadrature method , 2007, Appl. Math. Comput..
[14] Dongjie Liu,et al. The superconvergence of the Newton-Cotes rule for Cauchy principal value integrals , 2010, J. Comput. Appl. Math..
[15] Jin Li,et al. The extrapolation methods based on Simpson's rule for computing supersingular integral on interval , 2017, Appl. Math. Comput..
[16] F. Toutounian,et al. Numerical solution of weakly singular Fredholm integral equations via generalization of the Euler–Maclaurin summation formula , 2014 .
[17] Jean-Paul Berrut,et al. A circular interpretation of the Euler-Maclaurin formula , 2006 .
[18] Israel Navot,et al. A Further Extension of the Euler-Maclaurin Summation Formula , 1962 .
[19] Richard Weiss,et al. Asymptotic Expansions for Product Integration , 1973 .