Polynomially Solvable Cases 4711 QAP Instances with Known Optimal Solution 4912 Asymptotic Behavior 5113 Related Problems 5413

This paper aims at describing the state of the art on quadratic assignment problems (QAPs). It discusses the most important developments in all aspects of the QAP such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality, heuristics, polynomially solvable special cases, and asymptotic behavior. Moreover, it also considers problems related to the QAP, e.g. the biquadratic assignment problem, and discusses the relationship between the QAP and other well known combinatorial optimization problems, e.g. the traveling salesman problem, the graph partitioning problem, etc.

[1]  Jens Clausen,et al.  Solving Large Quadratic Assignment Problems in Parallel , 1997, Comput. Optim. Appl..

[2]  Warren P. Adams,et al.  A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems , 1986 .

[3]  Rudolf Henn,et al.  Operations Research-Verfahren , 1963 .

[4]  Zvi Drezner,et al.  Computing Lower Bounds for the Quadratic Assignment Problem with an Interior Point Algorithm for Linear Programming , 1995, Oper. Res..

[5]  Gerhard J. Woeginger,et al.  On-Line Scheduling of Two-Machine Open Shops Where Jobs Arrive Over Time , 1998, J. Comb. Optim..

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  Egon Balas,et al.  Nonlinear 0–1 programming: II. Dominance relations and algorithms , 1983, Math. Program..

[8]  A. M. Geoffrion Lagrangean Relaxation and Its Uses in Integer Programming , 1972 .

[9]  Federico Malucelli,et al.  A New Lower Bound for the Quadratic Assignment Problem , 1992, Oper. Res..

[10]  K. Conrad Das quadratische Zuweisungsproblem und zwei seiner Spezialfaelle , 1971 .

[11]  A. N. Elshafei,et al.  Hospital Layout as a Quadratic Assignment Problem , 1977 .

[12]  L. Mirsky,et al.  The spread of a matrix , 1956 .

[13]  K. G. Murty An Algorithm for Ranking All the Assignment in Order of Increasing Cost , 1968 .

[14]  R. Burkard,et al.  A heuristic for quadratic Boolean programs with applications to quadratic assignment problems , 1983 .

[15]  Michael Jünger,et al.  Polyhedral combinatorics and the acyclic subdigraph problem , 1985 .

[16]  Mauricio G. C. Resende,et al.  A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set , 1994, Oper. Res..

[17]  C. Jochum,et al.  Neue Anwendungsgebiete für Computer in der Chemie , 1979 .

[18]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[19]  Franz Rendl,et al.  Bounds for the Quadratic Assignment Problems Using Continuous Optimization Techniques , 1990, IPCO.

[20]  Warren P. Adams,et al.  Improved Linear Programming-based Lower Bounds for the Quadratic Assignment Proglem , 1993, Quadratic Assignment and Related Problems.

[21]  Jadranka Skorin-Kapov,et al.  Massively parallel tabu search for the quadratic assignment problem , 1993, Ann. Oper. Res..

[22]  Panos M. Pardalos,et al.  A GRASP for the biquadratic assignment problem , 1998, Eur. J. Oper. Res..

[23]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[24]  Nicos Christofides,et al.  A Graph Theoretic Analysis of Bounds for the Quadratic Assignment Problem , 1981 .

[25]  Rainer E. Burkard,et al.  A linear algorithm for the pos/neg-weighted 1-median problem on a cactus , 2007, Computing.

[26]  Alan M. Frieze,et al.  Algorithms for assignment problems on an array processor , 1989, Parallel Comput..

[27]  Nicos Christofides,et al.  An Exact Algorithm for the Quadratic Assignment Problem on a Tree , 1989, Oper. Res..

[28]  Tim Hopkins Remark on Algorithm 769: Fortran subroutines for approximate solution of sparse quadratic assignment problems using GRASP , 2003, TOMS.

[29]  Jadranka Skorin-Kapov,et al.  A Constructive Method to Improve Lower Bounds for the Quadratic Assignment Problem , 1993, Quadratic Assignment and Related Problems.

[30]  Alexander H. G. Rinnooy Kan,et al.  Asymptotic Properties of the Quadratic Assignment Problem , 1985, Math. Oper. Res..

[31]  Corso Elvezia Ant Colonies for the QAP , 1997 .

[32]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[33]  R. Burkard,et al.  Heuristics for biquadratic assignment problems and their computational comparison , 1995 .

[34]  Wansoo T. Rhee A note on asymptotic properties of the quadratic assignment problem , 1988 .

[35]  David H. West,et al.  Algorithm 608: Approximate Solution of the Quadratic Assignment Problem , 1983, TOMS.

[36]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[37]  Catherine Roucairol,et al.  A New Exact Algorithm for the Solution of Quadratic Assignment Problems , 1994, Discret. Appl. Math..

[38]  Franz Rendl,et al.  A New Lower Bound Via Projection for the Quadratic Assignment Problem , 1992, Math. Oper. Res..

[39]  R. Burkard Quadratic Assignment Problems , 1984 .

[40]  Panos M. Pardalos,et al.  A parallel algorithm for the quadratic assignment problem , 1989, Proceedings of the 1989 ACM/IEEE Conference on Supercomputing (Supercomputing '89).

[41]  Harold Greenberg,et al.  A quadratic assignment problem without column constraints , 1969 .

[42]  Hanif D. Sherali,et al.  Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems , 1990, Oper. Res..

[43]  V. Kaibel,et al.  Angewandte Mathematik Und Informatik Universit at Zu K Oln a Basic Study of the Qap-polytope , 1996 .

[44]  Jakob Krarup,et al.  Computer-aided layout design , 1978 .

[45]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[46]  Franz Rendl,et al.  On the Applicability of Lower Bounds for Solving Rectilinear Quadratic Assignment Problems in Parallel , 1998, Comput. Optim. Appl..

[47]  Manfred Padberg,et al.  Location, Scheduling, Design and Integer Programming , 2011, J. Oper. Res. Soc..

[48]  Jens Clausen,et al.  Joining forces in solving large-scale quadratic assignment problems in parallel , 1997, Proceedings 11th International Parallel Processing Symposium.

[49]  Federico Malucelli,et al.  A Reformulation Scheme and New Lower Bounds for the QAP , 1993, Quadratic Assignment and Related Problems.

[50]  F. Rendl,et al.  A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .

[51]  Peter Hahn,et al.  Lower Bounds for the Quadratic Assignment Problem Based upon a Dual Formulation , 1998, Oper. Res..

[52]  Jack W. Mosevich,et al.  Balancing hydraulic turbine runners--A discrete combinatorial optimization problem , 1986 .

[53]  F. Rendl Ranking scalar products to improve bounds for the quadratic assignment problem , 1985 .

[54]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[55]  T. L. Ward,et al.  Solving Quadratic Assignment Problems by ‘Simulated Annealing’ , 1987 .

[56]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[57]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[58]  Fengyuan Ren,et al.  Scheduling " , , 1997 .

[59]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[60]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[61]  Satissed Now Consider Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .

[62]  Rainer E. Burkard,et al.  Entwurf von Schreibmaschinentastaturen mittels quadratischer Zuordnungsprobleme , 1977, Math. Methods Oper. Res..

[63]  Panos M. Pardalos,et al.  Algorithm 754: Fortran subroutines for approximate solution of dense quadratic assignment problems using GRASP , 1996, TOMS.

[64]  Leonidas S. Pitsoulis Biquadratic Assignment Problem , 2009, Encyclopedia of Optimization.

[65]  Martin E. Dyer,et al.  On linear programs with random costs , 1986, Math. Program..

[66]  Michael Jünger,et al.  On the SQAP-Polytope , 2000, SIAM J. Optim..

[67]  Rainer E. Burkard,et al.  An algebraic approach to assignment problems , 1977, Math. Program..

[68]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[69]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[70]  Alan M. Frieze,et al.  A new rounding procedure for the assignment problem with applications to dense graph arrangement problems , 2002, Math. Program..

[71]  P. Chrétienne A polynomial algorithm to optimally schedule tasks on a virtual distributed system under tree-like precedence constraints , 1989 .

[72]  L. Kaufman,et al.  An algorithm for the quadratic assignment problem using Bender's decomposition , 1978 .

[73]  Arthur M. Geoffrion,et al.  Scheduling Parallel Production Lines with Changeover Costs: Practical Application of a Quadratic Assignment/LP Approach , 1976, Oper. Res..

[74]  Christos H. Papadimitriou,et al.  The complexity of facets resolved , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[75]  Gerhard J. Woeginger,et al.  Optimierung Und Kontrolle Projektbereich Diskrete Optimierung the Quadratic Assignment Problem with an Anti-monge Matrix and a Toeplitz Matrix: Easy and Hard Cases the Quadratic Assignment Problem with an Anti-monge and a Toeplitz Matrix: Easy and Hard Cases , 1995 .

[76]  Hanif D. Sherali,et al.  On the Use of Exact and Heuristic Cutting Plane Methods for the Quadratic Assignment Problem , 1982 .

[77]  Mihalis Yannakakis,et al.  Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..

[78]  R. Steele,et al.  Optimization , 2005, Encyclopedia of Biometrics.

[79]  Vittorio Maniezzo,et al.  The Ant System Applied to the Quadratic Assignment Problem , 1999, IEEE Trans. Knowl. Data Eng..

[80]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[81]  Charles Fleurent,et al.  Genetic Hybrids for the Quadratic Assignment Problem , 1993, Quadratic Assignment and Related Problems.

[82]  Harold S. Stone,et al.  Multiprocessor Scheduling with the Aid of Network Flow Algorithms , 1977, IEEE Transactions on Software Engineering.

[83]  Wansoo T. Rhee Stochastic Analysis of the Quadratic Assignment Problem , 1991, Math. Oper. Res..

[84]  Qing Zhao Semidefinite programming for assignment and partitioning problems , 1998 .

[85]  Panos M. Pardalos,et al.  The Quadratic Assignment Problem: A Survey and Recent Developments , 1993, Quadratic Assignment and Related Problems.

[86]  Gerhard J. Woeginger,et al.  A solvable case of the quadratic assignment problem , 1998, Oper. Res. Lett..

[87]  Panos M. Pardalos,et al.  Approximate solution of weighted MAX-SAT problems using GRASP , 1996, Satisfiability Problem: Theory and Applications.

[88]  C. S. Edwards A branch and bound algorithm for the Koopmans-Beckmann quadratic assignment problem , 1980 .

[89]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[90]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[91]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[92]  Franz Rendl,et al.  Lower bounds for the quadratic assignment problem via triangle decompositions , 1995, Math. Program..

[93]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[94]  Alice E. Smith,et al.  A genetic approach to the quadratic assignment problem , 1995, Comput. Oper. Res..

[95]  Gerhard Reinelt,et al.  The linear ordering problem: algorithms and applications , 1985 .

[96]  W. Leontief Input-output economics , 1967 .

[97]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[98]  David Connolly An improved annealing scheme for the QAP , 1990 .

[99]  J. W. Gavett,et al.  The Optimal Assignment of Facilities to Locations by Branch and Bound , 1966, Oper. Res..

[100]  Wojciech Szpankowski,et al.  Combinatorial optimization problems for which almost every algorithm is asymptotically optimal , 1995 .

[101]  Franz Rendl,et al.  Applications of parametric programming and eigenvalue maximization to the quadratic assignment problem , 1992, Math. Program..

[102]  A. Assad,et al.  On lower bounds for a class of quadratic 0, 1 programs , 1985 .

[103]  H. Sherali,et al.  Benders' partitioning scheme applied to a new formulation of the quadratic assignment problem , 1980 .

[104]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[105]  Leon Steinberg,et al.  The Backboard Wiring Problem: A Placement Algorithm , 1961 .

[106]  Ashish Tiwari,et al.  A greedy genetic algorithm for the quadratic assignment problem , 2000, Comput. Oper. Res..

[107]  Rainer E. Burkard,et al.  Probabilistic asymptotic properties of some combinatorial optimization problems , 1985, Discret. Appl. Math..

[108]  Rainer E. Burkard,et al.  On random quadratic bottleneck assignment problems , 1982, Math. Program..

[109]  Rainer E. Burkard,et al.  Combinatorial optimization in linearly ordered semimodules: A survey , 1982 .

[110]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[111]  Panos M. Pardalos,et al.  Generating quadratic assignment test problems with known optimal permutations , 1992, Comput. Optim. Appl..

[112]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[113]  José D. P. Rolim,et al.  Parallel Algorithms for Irregular Problems: State of the Art , 1995, Springer US.

[114]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[115]  John W. Dickey,et al.  Campus building arrangement using topaz , 1972 .

[116]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[117]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[118]  Giorgio Gallo,et al.  Lower bounds for the quadratic semi-assignment problem , 1986 .

[119]  Franz Rendl,et al.  Trust Regions and Relaxations for the Quadratic Assignment Problem , 1993, Quadratic Assignment and Related Problems.

[120]  Thomas E. Vollmann,et al.  An Experimental Comparison of Techniques for the Assignment of Facilities to Locations , 1968, Oper. Res..

[121]  Panos M. Pardalos,et al.  A local search algorithm for the quadratic assignment problem , 1992 .

[122]  V. Deineko,et al.  The Quadratic Assignment Problem: Theory and Algorithms , 1998 .

[123]  Panos M. Pardalos,et al.  A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment Problem , 1993, Quadratic Assignment and Related Problems.

[124]  J. G. Klincewicz,et al.  Avoiding local optima in thep-hub location problem using tabu search and GRASP , 1993, Ann. Oper. Res..

[125]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[126]  Jadranka Skorin-Kapov,et al.  Tabu Search Applied to the Quadratic Assignment Problem , 1990, INFORMS J. Comput..

[127]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[128]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[129]  Arvind Rajan,et al.  Using grasp to solve the component grouping problem , 1994 .

[130]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[131]  Catherine Roucairol,et al.  A parallel branch and bound algorithm for the quadratic assignment problem , 1987, Discret. Appl. Math..

[132]  R. Burkard,et al.  Assignment and Matching Problems: Solution Methods with FORTRAN-Programs , 1980 .

[133]  Gilbert Laporte,et al.  Balancing hydraulic turbine runners: A quadratic assignment problem , 1988 .

[134]  R. Jackson Inequalities , 2007, Algebra for Parents.

[135]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[136]  P. Gilmore Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem , 1962 .

[137]  Panos M. Pardalos,et al.  Lower bounds for the quadratic assignment problem , 1994, Ann. Oper. Res..

[138]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.