Automated generation and reactions of 3-hydroxymethylindoles in continuous-flow microreactors.

An automated sequential approach for the generation and reactions of 3-hydroxymethylindoles in continuous-flow microreactors is described. Consecutive halogen-magnesium exchanges of four 3-iodoindoles followed by addition to three aldehydes provided twelve 3-hydroxymethylindoles in a multi-microreactor setup. The synthetic flow strategy could be coupled with an in line continuous liquid-liquid extraction workup protocol for each reaction. Further elaboration of each of these indoles within the fluidic setup was achieved by acid-catalysed nucleophilic substitutions with allyltrimethylsilane and methanol used as nucleophiles. Overall, a set of four 3-iodoindoles was converted into thirty-six indole derivatives by a range of transformations including iodo-magnesium exchange/electrophile trapping and acid-catalysed nucleophilic substitution in a fully automated sequential fashion.

[1]  Takehiko Kitamori,et al.  A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions , 2004, Science.

[2]  Jeremy L. Steinbacher,et al.  Greener approaches to organic synthesis using microreactor technology. , 2007, Chemical reviews.

[3]  P. Knochel,et al.  Eine LiCl‐vermittelte Br/Mg‐Austauschreaktion zur Herstellung funktionalisierter Aryl‐ und Heteroarylmagnesium‐Verbindungen ausgehend von organischen Bromiden , 2004 .

[4]  C. Kappe Kontrolliertes Erhitzen mit Mikrowellen in der modernen organischen Synthese , 2004 .

[5]  J. Yoshida Flash chemistry using electrochemical method and microsystems. , 2005, Chemical communications.

[6]  Thomas Schwalbe,et al.  Novel Innovation Systems for a Cellular Approach to Continuous Process Chemistry from Discovery to Market , 2004 .

[7]  Anne Galarneau,et al.  Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. , 2009, Angewandte Chemie.

[8]  J. Yoshida,et al.  Carbolithiation of conjugated enynes with aryllithiums in microflow system and applications to synthesis of allenylsilanes. , 2009, Organic letters.

[9]  K. Jensen,et al.  Integrated continuous microfluidic liquid-liquid extraction. , 2007, Lab on a chip.

[10]  Holger Löwe,et al.  Selectivity Gains and Energy Savings for the Industrial Phenyl Boronic Acid Process Using Micromixer/Tubular Reactors , 2004 .

[11]  G. Gribble,et al.  Generation and reactions of 3-lithio-1-(phenylsulfonyl)indole , 1982 .

[12]  V. Bocchi,et al.  High Yield Selective Bromination and Iodination of Indoles in N,N-Dimethylformamide , 1982 .

[13]  Helen Song,et al.  Reaktionen in Mikrofluidiktröpfchen , 2006 .

[14]  D. Scherman,et al.  Synthesis and biological evaluation of (3,4,5-trimethoxyphenyl)indol-3-ylmethane derivatives as potential antivascular agents. , 2006, Bioorganic & medicinal chemistry.

[15]  D. O’Shea,et al.  Parallel microwave-assisted library of imidazothiazol-3-ones and imidazothiazin-4-ones. , 2005, Journal of combinatorial chemistry.

[16]  Douglas A. Horton,et al.  The combinatorial synthesis of bicyclic privileged structures or privileged substructures. , 2003, Chemical reviews.

[17]  J. Wynne,et al.  Synthesis of 3-[(1-aryl)aminomethyl]indoles. , 2002, The Journal of organic chemistry.

[18]  Holger Löwe,et al.  Chemie in Mikrostrukturreaktoren , 2004 .

[19]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[20]  J. Yoshida,et al.  Synthesis of photochromic diarylethenes using a microflow system. , 2007, Chemical communications.

[21]  Steven V Ley,et al.  Multistep synthesis using modular flow reactors: Bestmann-Ohira reagent for the formation of alkynes and triazoles. , 2009, Angewandte Chemie.

[22]  S. Shirakawa,et al.  Carboxylic acid catalyzed three-component aza-Friedel-Crafts reactions in water for the synthesis of 3-substituted indoles. , 2006, Organic letters.

[23]  P. Knochel,et al.  Herstellung und selektive Umsetzungen von gemischt bimetallischen aromatischen und heteroaromatischen Bor‐Magnesium‐Reagentien , 2005 .

[24]  Paul Watts,et al.  Continuous Flow Reactors, a Tool for the Modern Synthetic Chemist , 2008 .

[25]  Paul Watts,et al.  The application of micro reactors for organic synthesis. , 2005, Chemical Society reviews.

[26]  Peter H Seeberger,et al.  Microreactors as tools for synthetic chemists-the chemists' round-bottomed flask of the 21st century? , 2006, Chemistry.

[27]  Ralph Zhao,et al.  A Convenient and Stable Synthon for Ethyl Azide and Its Evaluation in a [3 + 2]-Cycloaddition Reaction under Continuous-Flow Conditions , 2009 .

[28]  J. Kobayashi,et al.  Multiphase organic synthesis in microchannel reactors. , 2006, Chemistry, an Asian journal.

[29]  G. Palmisano,et al.  Three‐Component Indium‐Mediated Domino Allylation of 1H‐Indole‐3‐carbaldehyde with Electron‐Rich (Hetero)arenes: Highly Efficient Access to Variously Functionalized Indolylbutenes , 2008 .

[30]  V. Granik,et al.  Chemistry of N-(1H-indol-3-ylmethyl)-N,N-dimethylamine (Gramine): A Review , 2004, Pharmaceutical Chemistry Journal.

[31]  S. Ley,et al.  A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. , 2006, Chemical communications.

[32]  P. Knochel,et al.  Preparation and selective reactions of mixed bimetallic aromatic and heteroaromatic boron-magnesium reagents. , 2005, Angewandte Chemie.

[33]  J. Gallagher,et al.  Microwave parallel library generation: comparison of a conventional- and microwave-generated substituted 4(5)-sulfanyl-1H-imidazole library. , 2002, Journal of combinatorial chemistry.

[34]  Helen Song,et al.  Reactions in droplets in microfluidic channels. , 2006, Angewandte Chemie.

[35]  C. Kappe,et al.  Controlled microwave heating in modern organic synthesis. , 2004, Angewandte Chemie.

[36]  N. Buschmann,et al.  Hydroboration and Suzuki–Miyaura Coupling Reactions with the Electronically Modulated Variant of an Ynamine: The Synthesis of (E)-β-Arylenamides , 2000 .

[37]  D. O’Shea,et al.  Development and application of a direct vinyl lithiation of cis-stilbene and a directed vinyl lithiation of an unsymmetrical cis-stilbene. , 2007, Organic letters.

[38]  Jun-ichi Yoshida,et al.  Flash chemistry: fast chemical synthesis by using microreactors. , 2008, Chemistry.

[39]  A. Bogdan,et al.  Improving solid-supported catalyst productivity by using simplified packed-bed microreactors. , 2007, Angewandte Chemie.

[40]  T. Wirth,et al.  Advanced organic synthesis using microreactor technology. , 2007, Organic & biomolecular chemistry.

[41]  H. Löwe,et al.  Chemistry in microstructured reactors. , 2004, Angewandte Chemie.

[42]  Jun-ichi Yoshida,et al.  Generation and reactions of o-bromophenyllithium without benzyne formation using a microreactor. , 2007, Journal of the American Chemical Society.

[43]  Sabine Hadida,et al.  Preparation and reactions of 1-(tert-butyldimethylsilyl)-3-lithioindole. Regioselective synthesis of 3-substituted indoles , 1994 .

[44]  P. Knochel,et al.  A LiCl-mediated Br/Mg exchange reaction for the preparation of functionalized aryl- and heteroarylmagnesium compounds from organic bromides. , 2004, Angewandte Chemie.

[45]  Albert van den Berg,et al.  On-microchip multiphase chemistry - a review of microreactor design principles and reagent contacting modes , 2005 .