Finding Hyperspectral Anomalies Using Multivariate Outlier Detection

This research demonstrates the adverse implications of using non-robust statistical methods for detecting anomalies in hyperspectral image data, and proposes the use of multivariate outlier detection methods as an alternative detection strategy. Existing outlier detection methods are adapted for use in a hyperspectral image context, and their performance is compared to the benchmark RX detector and a cluster-based anomaly detector. Tests conducted using both simulated data and actual hyperspectral imagery indicate that multivariate outlier detection methods can achieve superior detection performance relative to current non-robust detection methods.

[1]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[2]  A. Hadi A Modification of a Method for the Detection of Outliers in Multivariate Samples , 1994 .

[3]  M. Kim Multivariate outliers and decompositions of mahalanobis distance , 2000 .

[4]  S. Zani,et al.  Robust bivariate boxplots and multiple outlier detection , 1998 .

[5]  John Fisher,et al.  Hyperspectral analysis and target detection system for the Adaptive Spectral Reconnaissance Program (ASRP) , 1998, Defense, Security, and Sensing.

[6]  David M. Rocke,et al.  Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator , 2004, Comput. Stat. Data Anal..

[7]  Guoying Li,et al.  A New Approach for Detecting Multivariate Outliers , 2005 .

[8]  Leo H. Chiang,et al.  Exploring process data with the use of robust outlier detection algorithms , 2003 .

[9]  Chein-I Chang,et al.  Adaptive causal anomaly detection for hyperspectral imagery , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[10]  S. Sen Algorithms for Stochastic Mixed-Integer Programming Models , 2005 .

[11]  N. Campbell Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation , 1980 .

[12]  Dimitris G. Manolakis,et al.  Statistical characterization of natural hyperspectral backgrounds using t-elliptically contoured distributions , 2005 .

[13]  A. Schaum Joint subspace detection of hyperspectral targets , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[14]  Mark J. Carlotto,et al.  A cluster-based approach for detecting man-made objects and changes in imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Heesung Kwon,et al.  Adaptive anomaly detection using subspace separation for hyperspectral imagery , 2003 .

[16]  Stephen P. Catterall Anomaly detection based on the statistics of hyperspectral imagery , 2004, SPIE Optics + Photonics.

[17]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[18]  T. Moon The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..

[19]  P. Rousseeuw,et al.  A fast algorithm for the minimum covariance determinant estimator , 1999 .

[20]  Jason E. West,et al.  Matched Filter Stochastic Background Characterization for Hyperspectral Target Detection , 2005 .

[21]  A. Schaum A remedy for nonstationarity in background transition regions for real time hyperspectral detection , 2006, 2006 IEEE Aerospace Conference.

[22]  A. Hadi,et al.  BACON: blocked adaptive computationally efficient outlier nominators , 2000 .

[23]  W. R. Buckland,et al.  Outliers in Statistical Data , 1979 .

[24]  Chein-I Chang,et al.  Unsupervised target detection in hyperspectral images using projection pursuit , 2001, IEEE Trans. Geosci. Remote. Sens..

[25]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[26]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[27]  Tao Peng Anomaly Detection for Hyperspectral Imagery Based on Vertex Component Analysis , 2007 .

[28]  Pierre Goovaerts,et al.  Detection of local anomalies in high resolution hyperspectral imagery using geostatistical filtering and local spatial statistics , 2003 .

[29]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[30]  Sean Murphy,et al.  A new approach to anomaly detection in hyperspectral images , 2003, SPIE Defense + Commercial Sensing.

[31]  Véronique Achard,et al.  Anomalies detection in hyperspectral imagery using projection pursuit algorithm , 2004, SPIE Remote Sensing.

[32]  M. Jhun,et al.  Asymptotics for the minimum covariance determinant estimator , 1993 .

[33]  Aaron Keith Andrews,et al.  Anomaly detection in noisy hyperspectral imagery , 2004, SPIE Optics + Photonics.

[34]  Salah Bourennane,et al.  Whitening spatial correlation filtering for hyperspectral anomaly detection , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[35]  Dalton S. Rosario Highly effective logistic regression model for signal (anomaly) detection , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[36]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[37]  P. L. Davies,et al.  The asymptotics of Rousseeuw's minimum volume ellipsoid estimator , 1992 .

[38]  S. Morgan,et al.  Outlier detection in multivariate analytical chemical data. , 1998, Analytical chemistry.

[39]  D. Steinberg,et al.  Technometrics , 2008 .

[40]  Andrzej S. Kosinski,et al.  A procedure for the detection of multivariate outliers , 1998 .

[41]  Detection of local anomalies in high resolution hyperspectral imagery using geostatistical filtering and local spatial statistics , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[42]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[43]  Bell Telephone,et al.  ROBUST ESTIMATES, RESIDUALS, AND OUTLIER DETECTION WITH MULTIRESPONSE DATA , 1972 .

[44]  J. H. Venter,et al.  Identifying multivariate discordant observations: a computer-intensive approach , 1999 .

[45]  Geoffrey G. Hazel,et al.  Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[46]  José M. F. Moura,et al.  Hyperspectral imagery: Clutter adaptation in anomaly detection , 2000, IEEE Trans. Inf. Theory.

[47]  A. Atkinson Fast Very Robust Methods for the Detection of Multiple Outliers , 1994 .

[48]  A. Hadi Identifying Multiple Outliers in Multivariate Data , 1992 .

[49]  David L. Woodruff,et al.  Identification of Outliers in Multivariate Data , 1996 .

[50]  Douglas M. Hawkins,et al.  The feasible solution algorithm for the minimum covariance determinant estimator in multivariate data , 1994 .

[51]  Heesung Kwon,et al.  Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Kai-Tai Fang,et al.  Multiple outlier detection in multivariate data using projection pursuit techniques , 2000 .

[53]  Chein-I Chang,et al.  Real-time processing algorithms for target detection and classification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[54]  Chein-I Chang,et al.  A nested spatial window-based approach to target detection for hyperspectral imagery , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[55]  José M. F. Moura,et al.  Efficient detection in hyperspectral imagery , 2001, IEEE Trans. Image Process..

[56]  John P. Kerekes,et al.  Improved modeling of background distributions in an end-to-end spectral imaging system model , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[57]  Francisco J. Prieto,et al.  Using Angles to Identify Concentrated Multivariate Outliers , 2001, Technometrics.