Use of molecular dynamics simulations to estimate the solubility of menadione in supercritical CO2 using Chrastil's model

Abstract The binary system of menadione in explicit supercritical carbon dioxide (SC-CO2) was studied using molecular dynamics (MD) simulations, with the objective to understand the nature of interactions between menadione and SC-CO2 at different temperatures and pressures in order to complement experimental solubility measurements. A force field was developed for menadione and tested by comparing computed and experimental monoclinic crystal structures at 283 K and 0.01 MPa. Lattice parameters obtained from anisotropic isothermal-isobaric MD simulations agreed reasonably well with experimental values, with an average absolute relative deviation (AARD%) less than 7%. A previously validated force field for SC-CO2 was used, and simple mixing rules were used to describe cross interactions. Canonical ensemble MD simulations were used to estimate the association number for CO2 about menadione and the enthalpy required to form a SC-CO2 solvate complex with menadione as a function of temperature and CO2 density. Spatial distribution functions were computed to better understand the nature of the molecular-level interactions between menadione and SC-CO2 as well as between associating menadione molecules. This work is the first part of a study that uses MD simulations as the main tool to represent a binary system. The MD methodologies of this work will be applied to represent our future studies of menadione derivatives in SC-CO2.

[1]  S. Kerisit,et al.  Molecular Simulation of the Diffusion of Uranyl Carbonate Species in Aqueous Solution , 2010 .

[2]  J. D. Valle,et al.  Revision: Extracción con CO2 a alta presión. Fundamentos y aplicaciones en la industria de alimentos / Review: High pressure CO2 extraction. Fundamentals and applications in the food industry , 1999 .

[3]  Eila Järvenpää,et al.  Advances in supercritical carbon dioxide technologies , 1999 .

[4]  Zhenhao Duan,et al.  An optimized molecular potential for carbon dioxide. , 2005, The Journal of chemical physics.

[5]  J. Attfield,et al.  X-Ray and neutron powder diffraction studies of the crystal structure of vitamin K3 , 2004 .

[6]  R. Górska,et al.  Vitamin K metabolism: current knowledge and future research. , 2014, Molecular nutrition & food research.

[7]  J. Aguilera-Radic,et al.  High pressure co2 extraction. Fundamentals and applications in the food industry , 1999 .

[8]  H. Sovová,et al.  Supercritical fluid extraction from vegetable materials , 2011 .

[9]  A. Quick,et al.  Role of vitamin K in the synthesis of prothrombin. , 1951, The American journal of physiology.

[10]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[11]  J. Brennecke,et al.  Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies. , 2014, The journal of physical chemistry. B.

[12]  J. Valle,et al.  Modeling solubility in supercritical carbon dioxide using quantitative structure–property relationships , 2014 .

[13]  B. Subramaniam,et al.  Pharmaceutical processing with supercritical carbon dioxide. , 1997, Journal of pharmaceutical sciences.

[14]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[15]  Alejandro Cifuentes,et al.  Supercritical fluid extraction: Recent advances and applications. , 2010, Journal of chromatography. A.

[16]  G. Brunner,et al.  Solubilities of the Fat-Soluble Vitamins A, D, E, and K in Supercritical Carbon Dioxide , 1997 .

[17]  J. Valle,et al.  Solubility of menadione and dichlone in supercritical carbon dioxide , 2016 .

[18]  J. Chrastil,et al.  Solubility of solids and liquids in supercritical gases , 1982 .

[19]  Barbara Kirchner,et al.  TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories , 2011, Journal of Cheminformatics.

[20]  Cyrus Ghotbi,et al.  Solvation free energy and solubility of acetaminophen and ibuprofen in supercritical carbon dioxide: Impact of the solvent model , 2016 .

[21]  Edward J. Maginn,et al.  Force field comparison and thermodynamic property calculation of supercritical CO2 and CH4 using molecular dynamics simulations , 2014 .

[22]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[23]  Roger Impey,et al.  Hydration and mobility of ions in solution , 1983 .

[24]  E. Maginn,et al.  Historical Perspective and Current Outlook for Molecular Dynamics As a Chemical Engineering Tool , 2010 .

[25]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[26]  J. Valle,et al.  A refined equation for predicting the solubility of vegetable oils in high-pressure CO2 , 2012 .

[27]  Joshua D. Moore,et al.  Molecular Modeling of Matter: Impact and Prospects in Engineering , 2010 .

[28]  S. Bügel Vitamin K and bone health in adult humans. , 2008, Vitamins and hormones.

[29]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[30]  N. Wakao,et al.  Predictive correlation for binary diffusion coefficients in dense carbon dioxide , 1992 .

[31]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[32]  S. Ham,et al.  Naphthoquinone analogs as inactivators of cdc25 phosphatase. , 1998, Bioorganic & medicinal chemistry letters.

[33]  Shengui Ju,et al.  Monte Carlo simulations of phase behavior and microscopic structure for supercritical CO2 and thiophene mixtures , 2014 .

[34]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[35]  Yanru Wang,et al.  Molecular dynamics investigation on the infinite dilute diffusion coefficients of organic compounds in supercritical carbon dioxide , 2000 .

[36]  M. Bhadbhade,et al.  Vitamin K3 family members – Part II: Single crystal X-ray structures, temperature-induced packing polymorphism, magneto-structural correlations and probable anti-oncogenic candidature , 2008 .

[37]  S. Ham,et al.  Studies on Menadione as an Inhibitor of the cdc25 Phosphatase , 1997 .