A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals

Increasing awareness concerning food safety problems has been driving the search for simple and efficient biochemical analytical methods. In this paper, we develop a portable electro-acoustic biosensor based on a film bulk acoustic resonator for the detection of pesticide residues in agricultural products. A shear mode ZnO film bulk acoustic resonator with a micro-machining structure was fabricated as a mass-sensitive transducer for the real-time detection of antibody-antigen reactions in liquids. In order to obtain an ultra-low detection level, the artificial antigens were immobilized on the sensing surface of the resonator to employ a competitive format for the immunoassays. The competitive immunoreactions can be observed clearly through monitoring the frequency changes. The presence of pesticides was detected through the diminution of the frequency shift compared with the level without pesticides. The limit of detection for carbaryl (a widely used pesticide for vegetables and crops) is 2×10−10 M. The proposed device represents a potential alternative to the complex optical systems and electrochemical methods that are currently being used, and represents a significant opportunity in terms of simplicity of use and portability for on-site food safety testing.

[1]  Qixin Liu,et al.  Highly sensitive ZnO thin film bulk acoustic resonator for hydrogen detection , 2011 .

[2]  L M Lechuga,et al.  Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. , 2006, Biosensors & bioelectronics.

[3]  Hye-Sung Lee,et al.  Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. , 2002, Chemosphere.

[4]  S. Jha,et al.  Optical biosensors for food quality and safety assurance—a review , 2012, Journal of Food Science and Technology.

[5]  Hongwei Song,et al.  The pure-shear mode solidly mounted resonator based on c-axis oriented ZnO film , 2010 .

[6]  Yang Liu,et al.  A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples , 2009 .

[7]  Dan Du,et al.  Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. , 2010, Biosensors & bioelectronics.

[8]  Nidhi Chauhan,et al.  Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. , 2012, Analytical biochemistry.

[9]  Jan Přibyl,et al.  Development of piezoelectric immunosensors for competitive and direct determination of atrazine , 2003 .

[10]  Gunilla Wingqvist,et al.  AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications — A review , 2010 .

[11]  T. Yokoyama,et al.  Development of Piezoelectric Thin Film Resonator and Its Impact on Future Wireless Communication Systems , 2005 .

[12]  Luyin Zhang,et al.  A thin film electro-acoustic enzyme biosensor allowing the detection of trace organophosphorus pesticides. , 2012, Analytical biochemistry.

[13]  Ilia Katardjiev,et al.  Recent developments in thin film electro-acoustic technology for biosensor applications , 2012 .

[14]  Yolanda Jiménez,et al.  A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices. , 2009, Talanta.

[15]  Yibin Ying,et al.  Immunosensors for detection of pesticide residues. , 2008, Biosensors & bioelectronics.

[16]  Anis Nurashikin Nordin,et al.  Acoustic wave based MEMS devices for biosensing applications. , 2012, Biosensors & bioelectronics.

[17]  Hanna Radecka,et al.  Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. , 2009, Biosensors & bioelectronics.

[18]  Reinhard Niessner,et al.  Residue analysis of the pharmaceutical diclofenac in different water types using ELISA and GC-MS. , 2003, Environmental science & technology.

[19]  Dong-Kyung Kim,et al.  High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. , 2007, Biosensors & bioelectronics.

[20]  Ilke Gürol,et al.  Pesticide sensing in water with phthalocyanine based QCM sensors , 2012 .