Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis

[1]  M. Thiéry,et al.  Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials , 2011 .

[2]  Mickaël Thiery,et al.  Modelling of isothermal coupled moistureion transport in cementitious materials , 2011 .

[3]  A. Nonat,et al.  C-S-H/solution interface: Experimental and Monte Carlo studies , 2011 .

[4]  Patrick Dangla,et al.  Assessment and prediction of RC structure service life by means of durability indicators and physical/chemical models , 2009 .

[5]  M. Climent,et al.  Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst , 2009 .

[6]  F. H. Wittmann,et al.  Chloride Penetration into Concrete , 2008 .

[7]  M. Geiker,et al.  Prediction of chloride ingress and binding in cement paste , 2007 .

[8]  Véronique Baroghel-Bouny,et al.  AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 2: Non-steady-state migration tests and chloride diffusion coefficients , 2007 .

[9]  V. Baroghel-Bouny,et al.  AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 1: Non-steady-state diffusion tests and exposure to natural conditions , 2007 .

[10]  V. Baroghel-Bouny Water Vapour Sorption Experiments on Hardened Cementitious Materials: Part I: Essential Tool for Analysis of Hygral Behaviour and its Relation to Pore Structure , 2007 .

[11]  Patrick Dangla,et al.  Prediction of chloride ingress into saturated concrete on the basis of a multi-species model by numerical calculations , 2006 .

[12]  T. Kojima,et al.  Thermogravimetric investigation on the chloride binding behaviour of MK-lime paste , 2006 .

[13]  D. Mori,et al.  Estimation of Effective Diffusion Coefficients and Non-Linear Binding Parameters of Chloride by Reverse Analysis of Chloride Profiles , 2006, SP-234: Seventh CANMET/ACI International Conference on Durability of Concrete.

[14]  Robert Černý,et al.  Chloride Binding in Building Materials , 2006 .

[15]  Anwar Khitab,et al.  Predictive model for chloride penetration through concrete , 2005 .

[16]  Ahmed Loukili,et al.  Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach , 2004 .

[17]  Martyn Jones,et al.  Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel's salt , 2003 .

[18]  E. Samson,et al.  Predicting the performance of concrete structures exposed to chemically aggressive environment—Field validation , 2002 .

[19]  Christine M. Anderson-Cook,et al.  Impact of specification changes on chloride-induced corrosion service life of bridge decks , 2002 .

[20]  Joseph J. Biernacki,et al.  Kinetics of Reaction of Calcium Hydroxide and Fly Ash , 2001 .

[21]  Ferenc D. Tamás,et al.  Chloride ion binding capacity of aluminoferrites , 2001 .

[22]  J. Marchand,et al.  Modeling the influence of chemical reactions on the mechanisms of ionic transport in porous materials , 2000 .

[23]  J. Ollivier,et al.  Numerical simulation of multi-species diffusion , 2000 .

[24]  Michael D.A. Thomas,et al.  A study of the effect of chloride binding on service life predictions , 2000 .

[25]  Olivier Coussy,et al.  Propagation Fronts during Calcium Leaching and Chloride Penetration , 2000 .

[26]  V. Papadakis Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress , 2000 .

[27]  E. Samson,et al.  Modelling ion diffusion mechanisms in porous media , 1999 .

[28]  Marta Castellote,et al.  Chloride-binding isotherms in concrete submitted to non-steady-state migration experiments , 1999 .

[29]  Samson,et al.  Numerical Solution of the Extended Nernst-Planck Model. , 1999, Journal of colloid and interface science.

[30]  F. Glasser,et al.  Stability and solubility relationships in AFm phases: Part I. Chloride, sulfate and hydroxide , 1999 .

[31]  G. Arliguie,et al.  AFREM test procedures concerning chlorides in concrete: Extraction and titration methods , 1999 .

[32]  F. P. Glasser,et al.  Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding , 1998 .

[33]  Luca Bertolini,et al.  Simulation of chloride penetration in cement-based materials , 1997 .

[34]  Anik Delagrave,et al.  Chloride binding capacity of various hydrated cement paste systems , 1997 .

[35]  Ravindra K. Dhir,et al.  Chloride binding in GGBS concrete , 1996 .

[36]  Odd E. Gjørv,et al.  Diffusion behavior of chloride ions in concrete , 1996 .

[37]  Stuart Lyon,et al.  Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate , 1996 .

[38]  C Arya,et al.  Effect of cement type on chloride binding and corrosion of steel in concrete , 1995 .

[39]  Adam Neville,et al.  Chloride attack of reinforced concrete: an overview , 1995 .

[40]  Donald J Janssen,et al.  RESISTANCE OF CONCRETE TO FREEZING AND THAWING , 1994 .

[41]  Rasheeduzzafar,et al.  Corrosion Resistance Performance of Fly Ash Blended Cement Concrete , 1994 .

[42]  R. Vitaliani,et al.  Analysis of Chloride Diffusion into Partially Saturated Concrete , 1993 .

[43]  Shigeyoshi Nagataki,et al.  CONDENSATION OF CHLORIDE ION IN HARDENED CEMENT MATRIX MATERIALS AND ON EMBEDDED STEEL BARS , 1993 .

[44]  Carmen Andrade,et al.  Calculation of chloride diffusion coefficients in concrete from ionic migration measurements , 1993 .

[45]  Lars-Olof Nilsson,et al.  Chloride binding capacity and binding isotherms of OPC pastes and mortars , 1993 .

[46]  G. Sergi,et al.  Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment , 1992 .

[47]  James J. Beaudoin,et al.  Interaction of chloride and CSH , 1990 .

[48]  Nick R. Buenfeld,et al.  Factors influencing chloride-binding in concrete , 1990 .

[49]  Josef Tritthart,et al.  Chloride binding in cement II. The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding , 1989 .

[50]  H. Taylor A method for predicting alkazi ion concentrations in cement pore solutions , 1987 .

[51]  É. Samson Multiionic approaches to model chloride binding in cementitious materials , 2006 .

[52]  Y. Hosokawa Models for chloride ion bindings in hardened cement paste using thermodynamic equilibrium calculations , 2006 .

[53]  V. Baroghel-Bouny,et al.  Which toolkit for durability evaluation as regards chloride ingress into concrete? Part I: Comparison between various methods for assessing the chloride diffusion coefficient of concrete in saturated conditions , 2005 .

[54]  Kazuo Yamada,et al.  Chloride Binding of Cement Estimated by Binding Isotherms of Hydrates , 2005 .

[55]  J Gawsewitch,et al.  Ageing of concrete in natural environments: an experiment for the 21st century. IV Results on cores extracted from field-exposed test specimens of various sites as part of the first measurement sequence , 2004 .

[56]  Y. Cai,et al.  Study of chloride binding and diffusion in GGBS concrete , 2003 .

[57]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[58]  R. Hooton,et al.  Ion and mass transport in cement-based materials , 2001 .

[59]  Olivier Truc,et al.  Prediction of Chloride Penetration into Saturated Concrete Multi-Species Approach , 2000 .

[60]  Ravindra K. Dhir,et al.  Development of chloride-resisting concrete using fly ash , 1999 .

[61]  Jan Skalny,et al.  Materials science of concrete , 1989 .

[62]  F. Lea The chemistry of cement and concrete , 1970 .

[63]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..