A Visual Analytics Framework for Exploring Uncertainties in Reservoir Models

Geological uncertainty is an essential element that affects the prediction of hydrocarbon production. The standard approach to address the geological uncertainty is to generate a large number of random 3D geological models and then perform flow simulations for each of them. Such a brute-force approach is not efficient as the flow simulations are computationally costly and as a result, domain experts cannot afford running a large number of simulations. Therefore, it is critically important to be able to address the uncertainty using a few geological models, which can reasonably represent the overall uncertainty of the ensemble. Our goal is to design and develop a visual analytics framework to filter the geological models and to only select models that can potentially cover the uncertain space. This framework is based on the mutual information for the calculation of the distance between the models and clustering for the grouping of similar models. Interactive visualization tasks have also been designed to make the whole process more understandable. Finally, we evaluated our results by comparing with the existent brute force approach.

[1]  Zukui Li,et al.  Reservoir Geological Uncertainty Reduction: an Optimization-Based Method Using Multiple Static Measures , 2015, Mathematical Geosciences.

[2]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[3]  K. Aziz,et al.  Prediction Of Uncertainty In Reservoir Performance Forecast , 1992 .

[4]  Jennifer L. Dungan,et al.  Visualizing spatially varying distribution data , 2002, Proceedings Sixth International Conference on Information Visualisation.

[5]  Peter Filzmoser,et al.  Brushing Moments in Interactive Visual Analysis , 2010, Comput. Graph. Forum.

[6]  Kwan-Liu Ma,et al.  A framework for uncertainty-aware visual analytics , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[7]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[8]  Lejla Batina,et al.  Mutual Information Analysis: a Comprehensive Study , 2011, Journal of Cryptology.

[9]  Helwig Hauser,et al.  Accepted for Publication in Ieee Transactions on Visualization and Computer Graphics, Authors' Personal Copy 1 Interactive Visual Analysis of Heterogeneous Scientific Data across an Interface , 2022 .

[10]  David L. Kao,et al.  Visualization techniques for spatial probability density function data , 2004, Data Sci. J..

[11]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[12]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[13]  Jens Ledet Jensen,et al.  Fast screening of geostatistical realizations for SAGD reservoir simulation , 2014 .

[14]  Christopher K. I. Williams On a Connection between Kernel PCA and Metric Multidimensional Scaling , 2004, Machine Learning.

[15]  Thomas Nocke,et al.  Visual exploration and evaluation of climate-related simulation data , 2007, 2007 Winter Simulation Conference.

[16]  Jef Caers,et al.  Uncertainty Quantification in Reservoir Performance Using Distances and Kernel Methods--Application to a West Africa Deepwater Turbidite Reservoir , 2009 .

[17]  Akhil Datta-Gupta,et al.  Swept Volume Calculations and Ranking of Geostatistical Reservoir Models Using Streamline Simulation , 2000 .

[18]  Jef Caers,et al.  Bootstrap confidence intervals for reservoir model selection techniques , 2010 .

[19]  Darryl Fenwick,et al.  Using Metric Space Methods to Analyse Reservoir Uncertainty , 2011 .

[20]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[21]  J. Douglas Carroll,et al.  Two-Way Multidimensional Scaling: A Review , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[22]  Rüdiger Westermann,et al.  Multi-Charts for Comparative 3D Ensemble Visualization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[23]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[24]  Lars Linsen,et al.  Visual Analysis of Multi-Run Spatio-Temporal Simulations Using Isocontour Similarity for Projected Views , 2016, IEEE Transactions on Visualization and Computer Graphics.

[25]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Andrew T. Wilson,et al.  Toward visual analysis of ensemble data sets , 2009, UltraVis '09.

[27]  Stefan Bruckner,et al.  Information-based Transfer Functions for Multimodal Visualization , 2008, VCBM.

[28]  Hua Huang,et al.  Manifold Learning for Visualizing and Analyzing High-Dimensional Data , 2010, IEEE Intelligent Systems.

[29]  Jacqueline Le Moigne,et al.  Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient , 2003, IEEE Trans. Image Process..

[30]  J. Caers,et al.  Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling , 2010 .

[31]  David L. Kao,et al.  Visualizing spatial multivalue data , 2005, IEEE Computer Graphics and Applications.

[32]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[33]  Stefan Bruckner,et al.  Result-Driven Exploration of Simulation Parameter Spaces for Visual Effects Design , 2010, IEEE Transactions on Visualization and Computer Graphics.

[34]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Isosurface Similarity Maps , 2022 .

[35]  Kwan-Liu Ma,et al.  Importance-Driven Time-Varying Data Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[36]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[37]  C. Deutsch,et al.  Ranking Geostatistical Reservoir Models with Modified Connected Hydrocarbon Volume , 2012 .

[38]  A. Ardeshir Goshtasby Image Registration: Principles, Tools and Methods , 2012 .

[39]  Jef Caers,et al.  Modeling Uncertainty in the Earth Sciences , 2011 .