Widening Viewing Angles of Automultiscopic Displays Using Refractive Inserts

Displays that can portray environments that are perceivable from multiple views are known as multiscopic displays. Some multiscopic displays enable realistic perception of 3D environments without the need for cumbersome mounts or fragile head-tracking algorithms. These automultiscopic displays carefully control the distribution of emitted light over space, direction (angle) and time so that even a static image displayed can encode parallax across viewing directions (Iightfield). This allows simultaneous observation by multiple viewers, each perceiving 3D from their own (correct) perspective. Currently, the illusion can only be effectively maintained over a narrow range of viewing angles. In this paper, we propose and analyze a simple solution to widen the range of viewing angles for automultiscopic displays that use parallax barriers. We propose the use of a refractive medium, with a high refractive index, between the display and parallax barriers. The inserted medium warps the exitant lightfield in a way that increases the potential viewing angle. We analyze the consequences of this warp and build a prototype with a 93% increase in the effective viewing angle.

[1]  Shin'ya Nishida,et al.  Hiding of phase-based stereo disparity for ghost-free viewing without glasses , 2017, ACM Trans. Graph..

[2]  Wojciech Matusik,et al.  Improving visual quality of view transitions in automultiscopic displays , 2014, ACM Trans. Graph..

[3]  Qinping Zhao,et al.  Light field projection for lighting reproduction , 2015, 2015 IEEE Virtual Reality (VR).

[4]  Gordon Wetzstein,et al.  Polarization fields: dynamic light field display using multi-layer LCDs , 2011, SA '11.

[5]  Michael Halle,et al.  Computed holograms and holographic video display of 3D data , 2005, SIGGRAPH Courses.

[6]  Bahram Javidi,et al.  Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor. , 2003, Applied optics.

[7]  Sven Wanner,et al.  The Variational Structure of Disparity and Regularization of 4D Light Fields , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  G. Lippmann Epreuves reversibles donnant la sensation du relief , 1908 .

[9]  M. Halle Autostereoscopic displays and computer graphics , 1997, COMG.

[10]  Ruigang Yang,et al.  Toward the Light Field Display: Autostereoscopic Rendering via a Cluster of Projectors , 2008, IEEE Transactions on Visualization and Computer Graphics.

[11]  Marc Alexa,et al.  Joint 5D Pen Input for Light Field Displays , 2015, UIST.

[12]  Daniel Weiskopf,et al.  A Spectral Analysis of Function Composition and its Implications for Sampling in Direct Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[13]  A. Sullivan 58.3: A Solid‐state Multi‐planar Volumetric Display , 2003 .

[14]  Didier Stricker,et al.  Spherical Light Fields , 2014, BMVC.

[15]  Douglas Lanman,et al.  Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization , 2010, ACM Trans. Graph..

[16]  Jan Kautz,et al.  Content-adaptive lenticular prints , 2013, ACM Trans. Graph..

[17]  A W Lohmann,et al.  Binary fraunhofer holograms, generated by computer. , 1967, Applied optics.

[18]  Ralph R. Martin,et al.  Comfort-driven disparity adjustment for stereoscopic video , 2016, Computational Visual Media.

[19]  Alexei A. Efros,et al.  Light field video capture using a learning-based hybrid imaging system , 2017, ACM Trans. Graph..

[20]  Byoungho Lee,et al.  Additive light field displays , 2016, ACM Trans. Graph..

[21]  W. Freeman,et al.  Understanding Camera Trade-Offs through a Bayesian Analysis of Light Field Projections , 2008, ECCV.

[22]  Ting-Chun Wang,et al.  Learning-based view synthesis for light field cameras , 2016, ACM Trans. Graph..

[23]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[24]  M. Gross,et al.  Nonlinear disparity mapping for stereoscopic 3D , 2010, ACM Trans. Graph..

[25]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[26]  Marco Fiorentino,et al.  A multi-directional backlight for a wide-angle, glasses-free three-dimensional display , 2013, Nature.

[27]  Douglas Lanman,et al.  Near-eye light field displays , 2013, SIGGRAPH '13.

[28]  Frédo Durand,et al.  Antialiasing for automultiscopic 3D displays , 2006, EGSR '06.

[29]  Gordon Wetzstein,et al.  A survey on computational displays: Pushing the boundaries of optics, computation, and perception , 2013, Comput. Graph..

[30]  Gordon Wetzstein,et al.  The light field stereoscope , 2015, SIGGRAPH Emerging Technologies.

[31]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[32]  Myungjin Cho,et al.  Improved Viewing Zones for Projection Type Integral Imaging 3D Display Using Adaptive Liquid Crystal Prism Array , 2014, Journal of Display Technology.

[33]  Anthony Steed,et al.  Cinematic virtual reality: Evaluating the effect of display type on the viewing experience for panoramic video , 2017, 2017 IEEE Virtual Reality (VR).

[34]  Sung-Kyu Kim,et al.  Reduction of optical aberration induced by refraction of light in a parallax barrier based autostereoscopic 3D display , 2017 .

[35]  Ravi Ramamoorthi,et al.  A Light Transport Framework for Lenslet Light Field Cameras , 2015, TOGS.

[36]  Yi-Heng Chou,et al.  A study of optimal viewing distance in a parallax barrier 3D display , 2013 .

[37]  Wojciech Matusik,et al.  3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes , 2004, ACM Trans. Graph..

[38]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[39]  Myungjin Cho,et al.  Viewing angle enhancement of parallax barrier-based one-dimensional integral imaging display using a high refractive index medium , 2016 .

[40]  Gordon Wetzstein,et al.  Tensor displays , 2012, ACM Trans. Graph..

[41]  Wojciech Matusik,et al.  Cinema 3D , 2016, ACM Trans. Graph..

[42]  Shing-Chow Chan,et al.  Light Field , 2014, Computer Vision, A Reference Guide.

[43]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, ACM Trans. Graph..

[44]  Sven Wanner,et al.  Variational Light Field Analysis for Disparity Estimation and Super-Resolution , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Byoungho Lee,et al.  Viewing-angle-enhanced integral imaging by lens switching. , 2002, Optics letters.

[46]  Michael W. Halle,et al.  Fast computer graphics rendering for full parallax spatial displays , 1997, Electronic Imaging.

[47]  Ramesh Raskar,et al.  View-Dependent Displays and the Space of Light Fields , 2010, 1008.0034.

[48]  James Gao,et al.  High-speed switchable lens enables the development of a volumetric stereoscopic display. , 2009, Optics express.

[49]  Joshua Napoli,et al.  Volumetric three-dimensional display system with rasterization hardware , 2001, IS&T/SPIE Electronic Imaging.

[50]  Neil A. Dodgson Analysis of the viewing zone of multiview autostereoscopic displays , 2002, IS&T/SPIE Electronic Imaging.