Optic nerve involvement in experimental autoimmune encephalomyelitis to homologous spinal cord homogenate immunization in the dark agouti rat

[1]  L. Leocani,et al.  Visual evoked potentials can be reliably recorded using noninvasive epidermal electrodes in the anesthetized rat , 2018, Documenta Ophthalmologica.

[2]  Ahmed T. Toosy,et al.  Optic neuritis: the eye as a window to the brain , 2017, Current opinion in neurology.

[3]  M. Sela,et al.  Assessing remyelination - metabolic labeling of myelin in an animal model of multiple sclerosis , 2016, Journal of Neuroimmunology.

[4]  H. Lassmann,et al.  Multiple sclerosis: experimental models and reality , 2016, Acta Neuropathologica.

[5]  Christiane Pfarrer,et al.  Microglia response in retina and optic nerve in chronic experimental autoimmune encephalomyelitis , 2016, Journal of Neuroimmunology.

[6]  Ann M. Castelfranco,et al.  Evolution of rapid nerve conduction , 2016, Brain Research.

[7]  Jill A Hollenbach,et al.  The immunogenetics of multiple sclerosis: A comprehensive review. , 2015, Journal of autoimmunity.

[8]  Hua Yan,et al.  Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically , 2015, NeuroMolecular Medicine.

[9]  Andrea Sbarbati,et al.  Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling , 2015, The Journal of Neuroscience.

[10]  David H. Miller,et al.  Vision and vision-related outcome measures in multiple sclerosis , 2014, Brain : a journal of neurology.

[11]  Anne H. Cross,et al.  Axonal transport rate decreased at the onset of optic neuritis in EAE mice , 2014, NeuroImage.

[12]  Stephen D Miller,et al.  The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. , 2014, Handbook of clinical neurology.

[13]  Gavin Giovannoni,et al.  Neuroprotection in a Novel Mouse Model of Multiple Sclerosis , 2013, PloS one.

[14]  Fiona Costello,et al.  The Afferent Visual Pathway: Designing a Structural-Functional Paradigm of Multiple Sclerosis , 2013, ISRN neurology.

[15]  M. Petty,et al.  Effects of Prophylactic and Therapeutic Teriflunomide in Transcranial Magnetic Stimulation–Induced Motor-Evoked Potentials in the Dark Agouti Rat Model of Experimental Autoimmune Encephalomyelitis , 2013, The Journal of Pharmacology and Experimental Therapeutics.

[16]  K. Kleopa,et al.  Alterations of juxtaparanodal domains in two rodent models of CNS demyelination , 2013, Glia.

[17]  D. Pélisson,et al.  Persistent visual impairment in multiple sclerosis: prevalence, mechanisms and resulting disability , 2013, Multiple sclerosis.

[18]  M. Kuroda,et al.  Visual functional and histopathological correlation in experimental autoimmune optic neuritis. , 2012, Investigative ophthalmology & visual science.

[19]  Yuyi You,et al.  Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. , 2011, Investigative ophthalmology & visual science.

[20]  G. Comi,et al.  Flash visual evoked potentials in mice can be modulated by transcranial direct current stimulation , 2011, Neuroscience.

[21]  Yoshihiko Usui,et al.  Analysis of the Pathogenesis of Experimental Autoimmune Optic Neuritis , 2010, Journal of biomedicine & biotechnology.

[22]  Jeff W. M. Bulte,et al.  Evoked potential and behavioral outcomes for experimental autoimmune encephalomyelitis in Lewis rats , 2010, Neurological Sciences.

[23]  Jens Frahm,et al.  MRI of optic neuritis in a rat model , 2008, NeuroImage.

[24]  C. A. Foster,et al.  FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis , 2007, Brain Research Bulletin.

[25]  R. Jacobs,et al.  Myelin deficiencies visualized in vivo: Visually evoked potentials and T2‐weighted magnetic resonance images of shiverer mutant and wild‐type mice , 2006, Journal of neuroscience research.

[26]  J. Girault,et al.  Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. , 2006, Brain : a journal of neurology.

[27]  D. Pham‐Dinh,et al.  Axon loss is responsible for chronic neurological deficit following inflammatory demyelination in the rat , 2006, Experimental Neurology.

[28]  G. Comi,et al.  Motor evoked potentials in a mouse model of chronic multiple sclerosis , 2006, Muscle & nerve.

[29]  Hannelore Ehrenreich,et al.  Combined therapy with methylprednisolone and erythropoietin in a model of multiple sclerosis. , 2004, Brain : a journal of neurology.

[30]  M. Onofrj,et al.  Evoked potential (EP) alterations in experimental allergic encephalomyelitis (EAE): early delays and latency reductions without plaques , 2005, The Italian Journal of Neurological Sciences.

[31]  K. Deguchi,et al.  Electrophysiological follow-up of acute and chronic experimental allergic encephalomyelitis in the Lewis rat , 2005, European Archives of Psychiatry and Clinical Neuroscience.

[32]  M. Onofrj,et al.  The hemispheric distribution of the transient rat VEP: a comparison of flash and pattern stimulation , 2004, Experimental Brain Research.

[33]  M. Bähr,et al.  Methylprednisolone Increases Neuronal Apoptosis during Autoimmune CNS Inflammation by Inhibition of an Endogenous Neuroprotective Pathway , 2003, The Journal of Neuroscience.

[34]  E. Adachi-Usami,et al.  Accelerated aging of senescence accelerated mice R-1 demonstrated by flash visually evoked cortical potentials , 2003, Experimental Gerontology.

[35]  M. Bahr,et al.  Acute Neuronal Apoptosis in a Rat Model of Multiple Sclerosis , 2001, The Journal of Neuroscience.

[36]  H. Bolay,et al.  Altered mechanisms of motor-evoked potential generation after transient focal cerebral ischemia in the rat: implications for transcranial magnetic stimulation , 2000, Brain Research.

[37]  W. Blakemore,et al.  The origin of remyelinating cells in the central nervous system , 1999, Journal of Neuroimmunology.

[38]  A. Milici,et al.  Early eosinophil infiltration into the optic nerve of mice with experimental allergic encephalomyelitis. , 1998, Laboratory investigation; a journal of technical methods and pathology.

[39]  M P Stryker,et al.  Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse , 1996, The Journal of Neuroscience.

[40]  Tomas Olsson,et al.  Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund's adjuvant , 1995, Journal of Neuroimmunology.

[41]  R. Beck,et al.  The course of visual recovery after optic neuritis. Experience of the Optic Neuritis Treatment Trial. , 1994, Ophthalmology.

[42]  M. Onofrj,et al.  Evoked potentials (EPs) in experimental allergic encephalomyelitis: a study of EP modifications during the course of a controlled disease. , 1992, Electromyography and clinical neurophysiology.

[43]  A. Mizuno,et al.  2',3'-cyclic nucleotide 3'-phosphohydrolase activity in rat visual pathways with experimental allergic encephalomyelitis. , 1986, Japanese Journal of Ophthalmology.

[44]  M. Feinsod,et al.  Visual evoked potentials in experimental allergic encephalomyelitis , 1983, Journal of the Neurological Sciences.

[45]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[46]  K. A. Kooi,et al.  Visually evoked responses in multiple sclerosis1 , 1971, Journal of neurology, neurosurgery, and psychiatry.