Universal points in the asymptotic spectrum of tensors

The asymptotic restriction problem for tensors s and t is to find the smallest β ≥ 0 such that the nth tensor power of t can be obtained from the (β n+o(n))th tensor power of s by applying linear maps to the tensor legs — this is called restriction — when n goes to infinity. Applications include computing the arithmetic complexity of matrix multiplication in algebraic complexity theory, deciding the feasibility of an asymptotic transformation between pure quantum states via stochastic local operations and classical communication in quantum information theory, bounding the query complexity of certain properties in algebraic property testing, and bounding the size of combinatorial structures like tri-colored sum-free sets in additive combinatorics. Naturally, the asymptotic restriction problem asks for obstructions (think of lower bounds in computational complexity) and constructions (think of fast matrix multiplication algorithms). Strassen showed that for obstructions it is sufficient to consider maps from k-tensors to nonnegative reals, that are monotone under restriction, normalised on diagonal tensors, additive under direct sum and multiplicative under tensor product, named spectral points (SFCS 1986 and J. Reine Angew. Math. 1988). Strassen introduced the support functionals, which are spectral points for oblique tensors, a strict subfamily of all tensors (J. Reine Angew. Math. 1991). On the construction side, an important work is the Coppersmith-Winograd method for tight tensors and tight sets. We present the first nontrivial spectral points for the family of all complex tensors, named quantum functionals. Finding such universal spectral points has been an open problem for thirty years. We use techniques from quantum information theory, invariant theory and moment polytopes. We present comparisons among the support functionals and our quantum functionals, and compute generic values. We relate the functionals to instability from geometric invariant theory, in the spirit of Blasiak et al. (Discrete Anal. 2017). We prove that the quantum functionals are asymptotic upper bounds on slice-rank and multi-slice rank, extending a result of Tao and Sawin. Furthermore, we make progress on the construction side of the combinatorial version of the asymptotic restriction problem by extending the Coppersmith–Winograd method via combinatorial degeneration. The regular method constructs large free diagonals in powers of any tight set. Our extended version works for any set that has a combinatorial degeneration to a tight set. This generalizes a result of Kleinberg, Sawin and Speyer. As an application we reprove in hindsight recent results on tri-colored sum-free sets by reducing this problem to a result of Strassen on reduced polynomial multiplication. Proofs are in the full version of this paper, available at https://arxiv.org/abs/1709.07851.

[1]  Matthias Christandl,et al.  Asymptotic entanglement transformation between W and GHZ states , 2013, 1310.3244.

[2]  Matthias Christandl,et al.  Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.

[3]  Robert D. Kleinberg,et al.  The growth rate of tri-colored sum-free sets , 2016, Discrete Analysis.

[4]  J. Schwinger THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[5]  H. Nagaoka,et al.  A new proof of the channel coding theorem via hypothesis testing in quantum information theory , 2002, Proceedings IEEE International Symposium on Information Theory,.

[6]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[7]  M. Gribaudo,et al.  2002 , 2001, Cell and Tissue Research.

[8]  Yves Edel Extensions of Generalized Product Caps , 2004, Des. Codes Cryptogr..

[9]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[12]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[13]  Asaf Shapira Green's conjecture and testing linear-invariant properties , 2009, STOC '09.

[14]  M. Brion,et al.  Sur l'image de l'application moment , 1987 .

[15]  V. Strassen Gaussian elimination is not optimal , 1969 .

[16]  I. Mazin,et al.  Theory , 1934 .

[17]  Christopher Umans Group-theoretic algorithms for matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[18]  Linda Ness,et al.  A Stratification of the Null Cone Via the Moment Map , 1984 .

[19]  Matthias Christandl,et al.  Asymptotic tensor rank of graph tensors: beyond matrix multiplication , 2016, computational complexity.

[20]  Markus Bläser A (5/2)n2-Lower Bound for the Multiplicative Complexity of n×n-Matrix Multiplication , 2001, STACS.

[21]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[22]  V. Strassen Relative bilinear complexity and matrix multiplication. , 1987 .

[23]  Masahito Hayashi,et al.  Quantum universal variable-length source coding , 2002, quant-ph/0202001.

[24]  Sergey Norin,et al.  A DISTRIBUTION ON TRIPLES WITH MAXIMUM ENTROPY MARGINAL , 2016, Forum of Mathematics, Sigma.

[25]  Franz Mauch Ein Randverteilungsproblem und seine Anwendung auf das asymptotische Spektrum bilinearer Abbildungen , 1998, Konstanzer Schriften in Mathematik und Informatik / Universität Konstanz / Fakultät für Mathematik und Informatik.

[26]  Michel Brion,et al.  Lectures on the Geometry of Flag Varieties , 2005 .

[27]  Ishay Haviv,et al.  Sunflowers and Testing Triangle-Freeness of Functions , 2014, computational complexity.

[28]  J. M. Landsberg,et al.  Geometry and Complexity Theory , 2017 .

[29]  Markus Bläser,et al.  On Degeneration of Tensors and Algebras , 2016, MFCS.

[30]  Alexander Klyachko Coherent states, entanglement, and geometric invariant theory , 2002 .

[31]  Volker Strassen,et al.  The asymptotic spectrum of tensors and the exponent of matrix multiplication , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[32]  Michal Oszmaniec,et al.  Convexity of momentum map, Morse index, and quantum entanglement , 2014 .

[33]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[34]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[35]  Terence Tao Structure and randomness , 2008 .

[36]  Jordan S. Ellenberg,et al.  On large subsets of $F_q^n$ with no three-term arithmetic progression , 2016 .

[37]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[38]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[39]  M. Raamsdonk,et al.  Existence of Locally Maximally Entangled Quantum States via Geometric Invariant Theory , 2017, Annales Henri Poincaré.

[40]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[41]  Endre Szemerédi,et al.  Combinatorial Properties of Systems of Sets , 1978, J. Comb. Theory, Ser. A.

[42]  Vsevolod F. Lev,et al.  Progression-free sets in $\mathbb Z_4^n$ are exponentially small , 2017 .

[43]  Luke Pebody,et al.  Proof of a Conjecture of Kleinberg-Sawin-Speyer , 2016 .

[44]  R. Lathe Phd by thesis , 1988, Nature.

[45]  Reyer Sjamaar Convexity Properties of the Moment Mapping Re-examined☆ , 1994 .

[46]  Ernie Croot,et al.  Progression-free sets in Z_4^n are exponentially small , 2016, 1605.01506.

[47]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[48]  Masahito Hayashi,et al.  Simple construction of quantum universal variable-length source coding , 2002, IEEE International Symposium on Information Theory, 2003. Proceedings..

[49]  Aram W. Harrow,et al.  Nonzero Kronecker Coefficients and What They Tell us about Spectra , 2007 .

[50]  Volker Strassen,et al.  On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..

[51]  Madhu Sudan,et al.  Algebraic property testing: the role of invariance , 2008, Electron. Colloquium Comput. Complex..

[52]  A. J. Stothers On the complexity of matrix multiplication , 2010 .

[53]  Barbara Schneider,et al.  Basel , 2000 .

[54]  V. Strassen,et al.  Degeneration and complexity of bilinear maps: Some asymptotic spectra. , 1991 .

[55]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[56]  Eberhard Becker,et al.  Zum Darstellungssatz von Kadison-Dubois , 1983 .

[57]  Joshua A. Grochow,et al.  On cap sets and the group-theoretic approach to matrix multiplication , 2016, ArXiv.

[58]  Arnab Bhattacharyya,et al.  Lower bounds for testing triangle-freeness in Boolean functions , 2010, SODA '10.

[59]  A. Smirnov,et al.  Decomposition of symmetric powers of irreducible representations of semisimple Lie algebras and the Brion polytope , 2004 .

[60]  Madhu Sudan,et al.  Testing Linear-Invariant Non-linear Properties: A Short Report , 2010, Property Testing.

[61]  Peter Bürgisser,et al.  Geometric complexity theory and tensor rank , 2010, STOC '11.

[62]  B. M. Fulk MATH , 1992 .

[63]  Konstantin Wernli,et al.  Computing Entanglement Polytopes , 2018, 1808.03382.

[64]  Terence Tao Structure and Randomness: Pages from Year One of a Mathematical Blog , 2008 .

[65]  Matthias Christandl,et al.  The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .

[66]  Christopher Umans,et al.  A group-theoretic approach to fast matrix multiplication , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[67]  V. Strassen The asymptotic spectrum of tensors. , 1988 .

[68]  Hanspeter Kraft,et al.  Geometrische Methoden in der Invariantentheorie , 1984 .

[69]  Eric Naslund The Partition Rank of a Tensor and $k$-Right Corners in $\mathbb{F}_{q}^{n}$ , 2017 .

[70]  Hu Fu,et al.  Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication , 2014, APPROX-RANDOM.

[71]  Volker Strassen Asymptotic spectrum and matrix multiplication , 2012, ISSAC.

[72]  Verena Tobler,et al.  Spezialisierung und Degeneration von Tensoren , 1997 .

[73]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[74]  M. Franz Moment Polytopes of Projective G-Varieties and Tensor Products of Symmetric Group Representations , 2002 .

[75]  Noga Alon,et al.  On sunflowers and matrix multiplication , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[76]  Peter Bürgisser Degenerationsordnung und Trägerfunktional bilinearer Abbildungen , 1997 .

[77]  Kosaku Nagasaka,et al.  Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation , 2014, ISSAC 2014.

[78]  G. Vetrovec DES , 2021, Encyclopedia of Systems and Control.

[79]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[80]  J. M. Landsberg,et al.  New Lower Bounds for the Rank of Matrix Multiplication , 2012, SIAM J. Comput..

[81]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[82]  L. V. Ovsiannikov The Lie Theory , 1982 .