Performance of thin separate absorption, charge, and multiplication avalanche photodiodes

Previously, it has been demonstrated that resonant-cavity-enhanced separate-absorption-and-multiplication (SAM) avalanche photodiodes (APDs) can achieve high bandwidths and high gain-bandwidth products while maintaining good quantum efficiency. In this paper, we describe a GaAs-based resonant-cavity-enhanced SAM APD that utilizes a thin charge layer for improved control of the electric field profile. These devices have shown RC-limited bandwidths above 30 GHz at low gains and gain-bandwidth products as high as 290 GHz. In order to gain insight into the performance of these APDs, homojunction APDs with thin multiplication regions were studied. It was found that the gain and noise have a dependence on the width of the multiplication region that is not predicted by conventional models. Calculations using width-dependent ionization coefficients provide good fits to the measured results. These calculations indicate that the gain-bandwidth product depends strongly on the charge layer doping and on the multiplication layer thickness and, further, that even higher gain-bandwidth products can be achieved with optimized structures.

[1]  S. Sze High-speed semiconductor devices , 1990 .

[2]  T. Baird,et al.  High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes , 1993, IEEE Photonics Technology Letters.

[3]  J. Campbell,et al.  High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode , 1991 .

[4]  J. Bowers,et al.  Ultrawide-band long-wavelength p-i-n photodetectors , 1987 .

[5]  Resonant-cavity-enhanced pin photodetector with 17 GHz bandwidth-efficiency product , 1994 .

[6]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[7]  K. Brennan,et al.  Theory of the velocity-field relation in AlGaAs , 1988 .

[8]  J. Chyi,et al.  Resonant cavity-enhanced (RCE) photodetectors , 1991 .

[9]  K. Brennan,et al.  Experimental determination of impact ionization coefficients in , 1983, IEEE Electron Device Letters.

[10]  J. Geary,et al.  High bandwidth planar InP/InGaAs avalanche photodiodes , 1988 .

[11]  Bahaa E. A. Saleh,et al.  Time and frequency response of avalanche photodiodes with arbitrary structure , 1992 .

[12]  J.C. Campbell,et al.  A resonant-cavity, separate-absorption-and-multiplication, avalanche photodiode with low excess noise factor , 1996, IEEE Electron Device Letters.

[13]  Karl Hess,et al.  Impact ionisation in multilayered heterojunction structures , 1980 .

[14]  V. Rich Personal communication , 1989, Nature.

[15]  A. Lacaita,et al.  Mean gain of avalanche photodiodes in a dead space model , 1996 .

[16]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[17]  Joe C. Campbell,et al.  High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy , 1988 .

[18]  Yuichi Kawamura,et al.  A wide-bandwidth low-noise InGaAsP-InAlAs superlattice avalanche photodiode with a flip-chip structure for wavelengths of 1.3 and 1.55 mu m , 1993 .

[19]  J. S. Marsland,et al.  Lucky drift estimation of excess noise factor for conventional avalanche photodiodes including the dead space effect , 1992 .

[20]  Sethumadhavan Chandrasekhar,et al.  Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[21]  Joe C. Campbell,et al.  Multigigabit-per-second avalanche photodiode lightwave receivers , 1987 .

[22]  Joe C. Campbell,et al.  High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product , 1997 .

[23]  G. E. Stillman,et al.  Impact ionization in AlxGa1−xAs for x=0.1–0.4 , 1988 .

[24]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[25]  R. B. Emmons,et al.  Avalanche photodiode frequency response , 1967 .

[26]  J. N. Hollenhorst Frequency response theory for multilayer photodiodes , 1990 .

[27]  Katsuhiko Nishida,et al.  InGaAsP heterostructure avalanche photodiodes with high avalanche gain , 1979 .

[28]  L. M. Rucker,et al.  Theory of carrier multiplication and noise in avalanche devices—Part II: Two-carrier processes , 1979, IEEE Transactions on Electron Devices.

[29]  Chungho Lee,et al.  Quasistatic Approximation for Semiconductor Avalanches , 1970 .

[30]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes , 1992 .

[31]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.