Performance of thin separate absorption, charge, and multiplication avalanche photodiodes
暂无分享,去创建一个
Joe C. Campbell | Chenming Hu | H. Nie | B. G. Streetman | P. Yuan | G. Kinsey | K. A. Anselm | C. Lenox
[1] S. Sze. High-speed semiconductor devices , 1990 .
[2] T. Baird,et al. High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes , 1993, IEEE Photonics Technology Letters.
[3] J. Campbell,et al. High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode , 1991 .
[4] J. Bowers,et al. Ultrawide-band long-wavelength p-i-n photodetectors , 1987 .
[5] Resonant-cavity-enhanced pin photodetector with 17 GHz bandwidth-efficiency product , 1994 .
[6] R. Mcintyre. Multiplication noise in uniform avalanche diodes , 1966 .
[7] K. Brennan,et al. Theory of the velocity-field relation in AlGaAs , 1988 .
[8] J. Chyi,et al. Resonant cavity-enhanced (RCE) photodetectors , 1991 .
[9] K. Brennan,et al. Experimental determination of impact ionization coefficients in , 1983, IEEE Electron Device Letters.
[10] J. Geary,et al. High bandwidth planar InP/InGaAs avalanche photodiodes , 1988 .
[11] Bahaa E. A. Saleh,et al. Time and frequency response of avalanche photodiodes with arbitrary structure , 1992 .
[12] J.C. Campbell,et al. A resonant-cavity, separate-absorption-and-multiplication, avalanche photodiode with low excess noise factor , 1996, IEEE Electron Device Letters.
[13] Karl Hess,et al. Impact ionisation in multilayered heterojunction structures , 1980 .
[14] V. Rich. Personal communication , 1989, Nature.
[15] A. Lacaita,et al. Mean gain of avalanche photodiodes in a dead space model , 1996 .
[16] Joe C. Campbell,et al. Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .
[17] Joe C. Campbell,et al. High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy , 1988 .
[18] Yuichi Kawamura,et al. A wide-bandwidth low-noise InGaAsP-InAlAs superlattice avalanche photodiode with a flip-chip structure for wavelengths of 1.3 and 1.55 mu m , 1993 .
[19] J. S. Marsland,et al. Lucky drift estimation of excess noise factor for conventional avalanche photodiodes including the dead space effect , 1992 .
[20] Sethumadhavan Chandrasekhar,et al. Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .
[21] Joe C. Campbell,et al. Multigigabit-per-second avalanche photodiode lightwave receivers , 1987 .
[22] Joe C. Campbell,et al. High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product , 1997 .
[23] G. E. Stillman,et al. Impact ionization in AlxGa1−xAs for x=0.1–0.4 , 1988 .
[24] S. Personick. Receiver design for digital fiber optic communication systems, II , 1973 .
[25] R. B. Emmons,et al. Avalanche photodiode frequency response , 1967 .
[26] J. N. Hollenhorst. Frequency response theory for multilayer photodiodes , 1990 .
[27] Katsuhiko Nishida,et al. InGaAsP heterostructure avalanche photodiodes with high avalanche gain , 1979 .
[28] L. M. Rucker,et al. Theory of carrier multiplication and noise in avalanche devices—Part II: Two-carrier processes , 1979, IEEE Transactions on Electron Devices.
[29] Chungho Lee,et al. Quasistatic Approximation for Semiconductor Avalanches , 1970 .
[30] Bahaa E. A. Saleh,et al. Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes , 1992 .
[31] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.