Abstract A method is presented for application of the Element-Free Galerkin method (EFG) to solid mechanics problems containing material discontinuities. By using the EFG method, the trial and test functions for the weak form are constructed with moving least-square interpolants in each material domain. Additional constraints are imposed at the variational level to ensure satisfaction of interface conditions. As a result, only nodal data (no elemental connectivity) is needed. Given C 1 continuity of the interpolant weighting function, the dependent variable and its gradient are continuous in each material domain. Two linear elastic bi-material examples are presented to illustrate the effectiveness of the method.
[1]
T. Belytschko,et al.
A new implementation of the element free Galerkin method
,
1994
.
[2]
P. Lancaster,et al.
Surfaces generated by moving least squares methods
,
1981
.
[3]
T. Belytschko,et al.
Element‐free Galerkin methods
,
1994
.
[4]
Graham F. Carey,et al.
Treatment of material discontinuities in finite element computations
,
1987
.
[5]
T. Belytschko,et al.
Fracture and crack growth by element free Galerkin methods
,
1994
.
[6]
Brian Moran,et al.
A computational model for nucleation of solid-solid phase transformations
,
1995
.