Robust Multivariate Methods in Chemometrics
暂无分享,去创建一个
Peter Filzmoser | Sven Serneels | Ricardo A. Maronna | R. Maronna | P. Filzmoser | C. Croux | P. Espen | S. Serneels | P. J. Van Espen | Sven Serneels
[1] D. G. Simpson,et al. Robust principal component analysis for functional data , 2007 .
[2] J RousseeuwPeter,et al. A fast algorithm for the minimum covariance determinant estimator , 1999 .
[3] H. P. Lopuhaä. On the relation between S-estimators and M-estimators of multivariate location and covariance , 1989 .
[4] P. Filzmoser,et al. Algorithms for Projection-Pursuit Robust Principal Component Analysis , 2007 .
[5] P. Espen,et al. Identification of micro-organisms by dint of the electronic nose and trilinear partial least squares regression , 2004 .
[6] Mia Hubert,et al. ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.
[7] Victor J. Yohai,et al. The Behavior of the Stahel-Donoho Robust Multivariate Estimator , 1995 .
[8] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[9] Pascal Lemberge,et al. Quantitative analysis of 16–17th century archaeological glass vessels using PLS regression of EPXMA and µ‐XRF data , 2000 .
[10] Christophe Croux,et al. High breakdown estimators for principal components: the projection-pursuit approach revisited , 2005 .
[11] Stefan Van Aelst,et al. MULTIVARIATE REGRESSION S-ESTIMATORS FOR ROBUST ESTIMATION AND INFERENCE , 2005 .
[12] Peter Filzmoser,et al. Partial robust M-regression , 2005 .
[13] Robin Sibson,et al. What is projection pursuit , 1987 .
[14] Peter Filzmoser,et al. Introduction to Multivariate Statistical Analysis in Chemometrics , 2009 .
[15] S. Keleş,et al. Sparse partial least squares regression for simultaneous dimension reduction and variable selection , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[16] R. Fisher. THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .
[17] K. Baumann,et al. A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part II. Practical applications , 2002 .
[18] P. L. Davies,et al. Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .
[19] Mia Hubert,et al. Fast and robust discriminant analysis , 2004, Comput. Stat. Data Anal..
[20] Michel Tenenhaus,et al. PLS path modeling , 2005, Comput. Stat. Data Anal..
[21] Sven Serneels,et al. Calculation of PLS prediction intervals using efficient recursive relations for the Jacobian matrix , 2004 .
[22] 田中 豊,et al. Principal Component Analysis for Functional Data , 2001 .
[23] Eric R. Ziegel,et al. Tsukuba Meeting: Largest Attendance Ever , 2004, Technometrics.
[24] Guoying Li,et al. Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo , 1985 .
[25] Christophe Croux,et al. TOMCAT: A MATLAB toolbox for multivariate calibration techniques , 2007 .
[26] Youngjo Lee,et al. Sparse partial least-squares regression and its applications to high-throughput data analysis , 2011 .
[27] Katrien van Driessen,et al. A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.
[28] C. Caulin,et al. Oncogenic regulation and function of keratins 8 and 18 , 1996, Cancer and Metastasis Reviews.
[29] G. Fleuren,et al. Expression of keratin 19 distinguishes papillary thyroid carcinoma from follicular carcinomas and follicular thyroid adenoma. , 1989, American journal of clinical pathology.
[30] M. Hubert,et al. Robust methods for partial least squares regression , 2003 .
[31] K. Baumann,et al. A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part I. Search algorithm, theory and simulations , 2002 .
[32] David J. Cummins,et al. Iteratively reweighted partial least squares: A performance analysis by monte carlo simulation , 1995 .
[33] Michael C. Denham,et al. Prediction intervals in partial least squares , 1997 .
[34] Rosario Romera,et al. On robust partial least squares (PLS) methods , 1998 .
[35] J. Alexander,et al. Theory and Methods: Critical Essays in Human Geography , 2008 .
[36] Hendrik P. Lopuhaä,et al. Highly efficient estimators of multivariate location with high breakdown point , 1992 .
[37] H. Oja,et al. Sign and rank covariance matrices , 2000 .
[38] C. Croux,et al. Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies , 2000 .
[39] John W. Tukey,et al. A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.
[40] R. Zamar,et al. Bootstrapping robust estimates of regression , 2002 .
[41] Tormod Næs,et al. A user-friendly guide to multivariate calibration and classification , 2002 .
[42] K. Janssens,et al. Composition of 15-17th century archaeological glass vessels excavated in Antwerp, Belgium , 1998 .
[43] Mia Hubert,et al. The influence function of the Stahel–Donoho covariance estimator of smallest outlyingness , 2009 .
[44] PETER J. ROUSSEEUW,et al. Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.
[45] P. L. Davies,et al. Breakdown and groups , 2005, math/0508497.
[46] Christophe Croux,et al. Influence properties of partial least squares regression , 2004 .
[47] Stephane Heritier,et al. Robust Methods in Biostatistics , 2009 .
[48] D. Ruppert. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[49] Peter Filzmoser,et al. Robust Multivariate Methods: The Projection Pursuit Approach , 2005, GfKl.
[50] Michiel Debruyne,et al. THE INFLUENCE FUNCTION OF STAHEL-DONOHO TYPE METHODS FOR ROBUST COVARIANCE ESTIMATION AND PCA , 2006 .
[51] Christophe Croux,et al. A Fast Algorithm for Robust Principal Components Based on Projection Pursuit , 1996 .
[52] Stefan Van Aelst,et al. Fast and robust bootstrap for LTS , 2005, Comput. Stat. Data Anal..
[53] S. D. Jong. SIMPLS: an alternative approach to partial least squares regression , 1993 .
[54] C. R. Rao,et al. The Utilization of Multiple Measurements in Problems of Biological Classification , 1948 .
[55] Peter Filzmoser,et al. Robust continuum regression , 2005 .
[56] Mia Hubert,et al. Fast model selection for robust calibration methods , 2005 .
[57] M. Hubert,et al. A fast method for robust principal components with applications to chemometrics , 2002 .
[58] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[59] S. Frosch Møller,et al. Robust methods for multivariate data analysis , 2005 .
[60] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[61] Ricardo A. Maronna,et al. Principal Components and Orthogonal Regression Based on Robust Scales , 2005, Technometrics.
[62] Mia Hubert,et al. LIBRA: a MATLAB library for robust analysis , 2005 .
[63] Sven Serneels,et al. Spatial Sign Preprocessing: A Simple Way To Impart Moderate Robustness to Multivariate Estimators , 2006, J. Chem. Inf. Model..
[64] Lutgarde M. C. Buydens,et al. Strategy for constructing robust multivariate calibration models , 1999 .
[65] A. Garrido-Varo,et al. Optimization of Discriminant Partial Least Squares Regression Models for the Detection of Animal By-Product Meals in Compound Feedingstuffs by Near-Infrared Spectroscopy , 2006, Applied spectroscopy.
[66] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[67] Vasil Simeonov,et al. A comparison between two robust PCA algorithms , 2004 .
[68] Douglas M. Hawkins,et al. High-Breakdown Linear Discriminant Analysis , 1997 .
[69] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[70] W. Fung,et al. High Breakdown Estimation for Multiple Populations with Applications to Discriminant Analysis , 2000 .
[71] Philippe Besse,et al. Statistical Applications in Genetics and Molecular Biology A Sparse PLS for Variable Selection when Integrating Omics Data , 2011 .
[72] Sven Serneels,et al. Bootstrap confidence intervals for trilinear partial least squares regression , 2005 .
[73] H. Kiers,et al. Bootstrap confidence intervals for three‐way methods , 2004 .
[74] Christophe Croux,et al. Implementing the Bianco and Yohai estimator for logistic regression , 2003, Comput. Stat. Data Anal..