A circularity accounting network: CO2 measurement along supply chains using machine learning

This paper proposes to use a type of machine learning network called artificial neural networks to design a circularity accounting network. The network is composed of human and non-human actors and accounts for the impact of products’ CO2 emissions and sequestration along global supply chains.  The network serves to connect people and other actors that share a CO2 indicator and allows users to visualize the level of (un-) circularity of different products through specific diagrams calculated by a CO2 estimator drawing on insights from actor-network theory. Unlike most previous circular economy accounting studies that develop some type of framework or indicator that represent measurements at micro, meso or macro levels, the circularity accounting network is not confined to a particular level of analysis but is designed to build relationships between multiple users at different levels (e.g., government, corporate or consumer actors). The paper presents the conceptual design and a preliminary test of the network using real data, helping to advance the underexplored potential of artificial intelligence in the field of circular economy accounting. The main contribution of this network is that data provided by the indicator: (i) is derived from the network itself learning from open sources, the network (ii) is not static but keeps flowing as new relationships are built within the network, moving toward self-regulating, (iii) contemplates both emissions and sequestrations along supply chains. Este artículo propone utilizar un tipo de red de aprendizaje automático denominado redes neuronales artificiales para diseñar una red de contabilidad de la circularidad. La red está compuesta por actores humanos y no humanos y contabiliza el impacto de las emisiones y el secuestro de CO2 de los productos a lo largo de las cadenas de suministro mundiales.  La red sirve para conectar a personas y otros actores que comparten un indicador de CO2 y permite a los usuarios visualizar el nivel de (in)circularidad de diferentes productos a través de diagramas específicos calculados por un estimador de CO2 basado en conocimientos de la teoría de las redes de actores. A diferencia de la mayoría de los estudios anteriores sobre contabilidad de la economía circular que desarrollan algún tipo de marco o indicador que representa mediciones a nivel micro, meso o macro, la red de contabilidad de la circularidad no se limita a un nivel concreto de análisis, sino que está diseñada para establecer relaciones entre múltiples usuarios a diferentes niveles (por ejemplo, actores gubernamentales, corporativos o consumidores). El documento presenta el diseño conceptual y una prueba preliminar de la red utilizando datos reales, lo que contribuye a avanzar en el potencial poco explorado de la inteligencia artificial en el ámbito de la contabilidad de la economía circular. La principal aportación de esta red es que los datos proporcionados por el indicador: (i) se derivan de la propia red que aprende de fuentes abiertas; (ii) la red no es estática, sino que sigue fluyendo a medida que se construyen nuevas relaciones dentro de la red, avanzando hacia la autorregulación; (iii) contempla tanto las emisiones como los secuestros a lo largo de las cadenas de suministro.

[1]  Alfonso Aranda-Usón,et al.  Reporting measurements or measuring for reporting? Internal measurement of the Circular Economy from an environmental accounting approach and its relationship , 2023, Revista de Contabilidad.

[2]  Alfonso Aranda-Usón,et al.  Sustainability reporting in view of the European sustainable finance taxonomy: Is the financial sector ready to disclose circular economy? , 2022, Corporate Social Responsibility and Environmental Management.

[3]  M. Bovea,et al.  Sustainability reports as a tool for measuring and monitoring the transition towards the circular economy of organisations: Proposal of indicators and metrics. , 2022, Journal of environmental management.

[4]  Adriana Hofmann Trevisan,et al.  A framework of digital technologies for the circular economy: Digital functions and mechanisms , 2022, Business Strategy and the Environment.

[5]  Sabina Scarpellini Social impacts of a circular business model: An approach from a sustainability accounting and reporting perspective , 2021, Corporate Social Responsibility and Environmental Management.

[6]  Abigail M. York,et al.  Integrating institutional approaches and decision science to address climate change: a multi-level collective action research agenda , 2021 .

[7]  Huiyue Jin Prediction of direct carbon emissions of Chinese provinces using artificial neural networks , 2021, PloS one.

[8]  Berend Smit,et al.  Toward smart carbon capture with machine learning , 2021, Cell Reports Physical Science.

[9]  Lucy J. Wishart,et al.  Accounting for circularity , 2021 .

[10]  L. Pitt,et al.  The circular economy meets artificial intelligence (AI): understanding the opportunities of AI for reverse logistics , 2021 .

[11]  Min Chen,et al.  Environmental cost control system of manufacturing enterprises using artificial intelligence based on value chain of circular economy , 2020, Enterp. Inf. Syst..

[12]  F. Llena-Macarulla,et al.  Are circular economy policies actually reaching organizations? Evidence from the largest Spanish companies , 2020 .

[13]  K. Sasaki,et al.  Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones , 2020, Scientific Reports.

[14]  S. Ramakrishna,et al.  Artificial Intelligence-Driven Circular Economy as a Key Enabler for Sustainable Energy Management , 2020, Materials Circular Economy.

[15]  G. Koperna,et al.  A Workflow Incorporating an Artificial Neural Network to Predict Subsurface Porosity for CO2 Storage Geological Site Characterization , 2020, Processes.

[16]  Riccardo Christopher Spani The New Circular Economy Action Plan , 2020 .

[17]  H. Fathizad,et al.  Comparison of RBF and MLP neural network performance and regression analysis to estimate carbon sequestration , 2020, International Journal of Environmental Science and Technology.

[18]  Aldo Roberto Ometto,et al.  Circular economy indicators for organizations considering sustainability and business models: Plastic, textile and electro-electronic cases , 2020 .

[19]  Alfonso Aranda-Usón,et al.  The progressive adoption of a circular economy by businesses for cleaner production: An approach from a regional study in Spain , 2020, Journal of Cleaner Production.

[20]  Luz María Marín-Vinuesa,et al.  Dynamic capabilities and environmental accounting for the circular economy in businesses , 2020 .

[21]  S. Carpenter,et al.  Human impacts on planetary boundaries amplified by Earth system interactions , 2019, Nature Sustainability.

[22]  B. Scholtens,et al.  Accounting and accountability in the Anthropocene , 2019, Accounting, Auditing & Accountability Journal.

[23]  E. Funck,et al.  Management control in circular economy. Exploring and theorizing the adaptation of management control to circular business models , 2019, Journal of Cleaner Production.

[24]  S. Terzi,et al.  Circular economy performance assessment methods: A systematic literature review , 2019, Journal of Cleaner Production.

[25]  Ogunmakinde,et al.  A Review of Circular Economy Development Models in China, Germany and Japan , 2019, Recycling.

[26]  Alfonso Aranda-Usón,et al.  Measurement of the circular economy in businesses: Impact and implications for regional policies , 2019, ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT.

[27]  Joseph Sarkis,et al.  Degrowth within – Aligning circular economy and strong sustainability narratives , 2019, Resources, Conservation and Recycling.

[28]  Luz María Marín-Vinuesa,et al.  Financial Resources for the Circular Economy: A Perspective from Businesses , 2019, Sustainability.

[29]  Tally Katz‐Gerro,et al.  Mapping circular economy activities in the European Union: Patterns of implementation and their correlates in small and medium‐sized enterprises , 2018, Business Strategy and the Environment.

[30]  Han Zhang,et al.  Self-Attention Generative Adversarial Networks , 2018, ICML.

[31]  Stefan Pauliuk,et al.  Critical appraisal of the circular economy standard BS 8001:2017 and a dashboard of quantitative system indicators for its implementation in organizations , 2018 .

[32]  Azucena Gracia,et al.  Do consumers care about European food labels? An empirical evaluation using best-worst method , 2017 .

[33]  M. Hekkert,et al.  Conceptualizing the Circular Economy: An Analysis of 114 Definitions , 2017 .

[34]  Bruno Latour,et al.  Facing Gaia: Eight Lectures on the New Climatic Regime , 2017 .

[35]  Marcus Linder,et al.  A Metric for Quantifying Product‐Level Circularity , 2017 .

[36]  Quoc V. Le,et al.  Massive Exploration of Neural Machine Translation Architectures , 2017, EMNLP.

[37]  S. Ulgiati,et al.  A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems , 2016 .

[38]  Samy Bengio,et al.  Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks , 2015, NIPS.

[39]  Keith R. Skene,et al.  The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context , 2015, Journal of Business Ethics.

[40]  Kari Lukka,et al.  Domain theory and method theory in management accounting research , 2014 .

[41]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[42]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[43]  K. Grunert,et al.  Sustainability Labels on Food Products: Consumer Motivation, Understanding and Use , 2014 .

[44]  J. Bebbington,et al.  Actor-Network Theory: A Briefing Note and Possibilities for Social and Environmental Accounting Research , 2013 .

[45]  A. Heshmati,et al.  A review of the circular economy in China : Moving from rhetoric to implementation , 2013 .

[46]  F. Berkes,et al.  Community Resilience: Toward an Integrated Approach , 2013 .

[47]  C. Turner On The Modern Cult Of The Factish Gods , 2012, European Journal of Sociology.

[48]  Stefan Schaltegger,et al.  Carbon accounting for sustainability and management. Status quo and challenges , 2012 .

[49]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[50]  Gabrielle Durepos Reassembling the Social: An Introduction to Actor‐Network‐Theory , 2008 .

[51]  I. D. Boer,et al.  Life cycle assessment of conventional and organic milk production in the Netherlands , 2008 .

[52]  Adrian J. Ivakhiv Toward a Multicultural Ecology , 2002 .

[53]  Alan D. Lowe,et al.  After ANT:an illustrative discussion of the implications for qualitative accounting case research , 2001 .

[54]  Wai Fong Chua,et al.  The role of actor-networks and boundary objects in management accounting change: a field study of an implementation of activity-based costing , 2001 .

[55]  Stephen Fox Communities Of Practice, Foucault And Actor‐Network Therory , 2000 .

[56]  Felix Stalder,et al.  Pandora's Hope: Essays on the Reality of Science Studies , 2000, Inf. Soc..

[57]  John Hassard,et al.  Organization Unbound: Actor-Network Theory, Research Strategy and Institutional Flexibility , 1999 .

[58]  J. Law After Ant: Complexity, Naming and Topology , 1999 .

[59]  T. Gladwin,et al.  Shifting Paradigms for Sustainable Development: Implications for Management Theory and Research , 1995 .

[60]  John Law,et al.  Notes on the theory of the actor-network: Ordering, strategy, and heterogeneity , 1992 .

[61]  R. Gray ACCOUNTING AND ENVIRONMENTALISM: AN EXPLORATION OF THE CHALLENGE OF GENTLY ACCOUNTING FOR... , 1992 .

[62]  M. Callon Some Elements of a Sociology of Translation: Domestication of the Scallops and the Fishermen of St Brieuc Bay , 1984 .

[63]  R. Costanza,et al.  Embodied energy and economic valuation. , 1980, Science.

[64]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[65]  J. Korhonen,et al.  Circular Economy: The Concept and its Limitations , 2018 .

[66]  Erdogan Dogdu,et al.  A Deep Neural-Network Based Stock Trading System Based on Evolutionary Optimized Technical Analysis Parameters , 2017 .

[67]  ThE CirCUlAr,et al.  EU Action Plan for the Circular Economy , 2016 .

[68]  Marie Schmidt,et al.  The Corporation The Pathological Pursuit Of Profit And Power , 2016 .

[69]  R. Salmons Carbon Calculations over the Life Cycle of Industrial Activities (CCaLC) , 2011 .

[70]  B. O'Connell,et al.  Actor-network Theory: A critical appraisal , 2011 .

[71]  COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS , 2009 .

[72]  N. Castree False Antitheses? Marxism, Nature and Actor‐Networks , 2002 .

[73]  世界環境経済人協議会 Greenhouse gas protocol : a corporate accounting and reporting standard , 2001 .

[74]  B. Latour We Have Never Been Modern , 1991 .