Modelling disease spread through random and regular contacts in clustered populations.

[1]  J. Yorke,et al.  Gonorrhea Transmission Dynamics and Control , 1984 .

[2]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[3]  Odo Diekmann,et al.  A deterministic epidemic model taking account of repeated contacts between the same individuals , 1998, Journal of Applied Probability.

[4]  R. Rothenberg,et al.  Personal risk taking and the spread of disease: beyond core groups. , 1996, The Journal of infectious diseases.

[5]  M. Kretzschmar,et al.  Modeling prevention strategies for gonorrhea and Chlamydia using stochastic network simulations. , 1996, American journal of epidemiology.

[6]  W. Edmunds,et al.  Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  F. Ball,et al.  Epidemics with two levels of mixing , 1997 .

[8]  D. Rand,et al.  Correlation models for childhood epidemics , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  R. Rothenberg,et al.  Using Social Network and Ethnographic Tools to Evaluate Syphilis Transmission , 1998, Sexually transmitted diseases.

[10]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[11]  M. Keeling,et al.  The effects of local spatial structure on epidemiological invasions , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  M. Kretzschmar,et al.  Perspective: human contact patterns and the spread of airborne infectious diseases. , 1999, Trends in microbiology.

[13]  Jacqueline McGlade,et al.  Advanced Ecological Theory , 1999 .

[14]  A. Sasaki,et al.  ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  S. Cornell,et al.  Dynamics of the 2001 UK Foot and Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape , 2001, Science.

[16]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[17]  Christl A. Donnelly,et al.  The Foot-and-Mouth Epidemic in Great Britain: Pattern of Spread and Impact of Interventions , 2001, Science.

[18]  Martin Suter,et al.  Small World , 2002 .

[19]  Lev S. Tsimring,et al.  Modeling of contact tracing in social networks , 2003 .

[20]  Martin Eichner,et al.  Case isolation and contact tracing can prevent the spread of smallpox. , 2003, American journal of epidemiology.

[21]  M. Newman Properties of highly clustered networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Matt J Keeling,et al.  Contact tracing and disease control , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  M. Keeling,et al.  Disease evolution on networks: the role of contact structure , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[25]  P. J. Hudson,et al.  Large Shifts in Pathogen Virulence Relate to Host Population Structure , 2004, Science.

[26]  Matt J Keeling,et al.  Monogamous networks and the spread of sexually transmitted diseases. , 2004, Mathematical biosciences.

[27]  P. Bearman,et al.  Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks1 , 2004, American Journal of Sociology.

[28]  T. Wong,et al.  Sexual network analysis of a gonorrhoea outbreak , 2004, Sexually Transmitted Infections.

[29]  I. Kiss,et al.  Disease contact tracing in random and clustered networks , 2005, Proceedings of the Royal Society B: Biological Sciences.

[30]  John Levi Martin,et al.  Persistence of close personal ties over a 12-year period , 2006, Soc. Networks.

[31]  D. Cummings,et al.  Strategies for mitigating an influenza pandemic , 2006, Nature.

[32]  Rowland R Kao,et al.  The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. , 2006, Mathematical biosciences.

[33]  P. Mcelroy,et al.  Transmission network analysis to complement routine tuberculosis contact investigations. , 2007, American journal of public health.