Optical momentum transfer to absorbing mie particles.

The momentum transfer to absorbing particles is derived from the Lorentz force density without prior assumption of the momentum of light in media. We develop a view of momentum conservation rooted in the stress tensor formalism that is based on the separation of momentum contributions to bound and free currents and charges consistent with the Lorentz force density. This is in contrast with the usual separation of material and field contributions. The theory is applied to predict a decrease in optical momentum transfer to Mie particles due to absorption, which contrasts the common intuition based on the scattering and absorption by Rayleigh particles.

[1]  J. Richards,et al.  The pressure of radiation in a refracting medium , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[3]  D. F. Nelson,et al.  Propagation of electromagnetic energy and momentum through an absorbing dielectric , 1997 .

[4]  S. Stallinga Energy and momentum of light in dielectric media. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Jin Au Kong,et al.  Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  R. V. Jones,et al.  The measurement of optical radiation pressure in dispersive media , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  R. Loudon,et al.  Theory of the radiation pressure on dielectric surfaces , 2002 .

[8]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[9]  Jin Au Kong,et al.  Lorentz Force on Dielectric and Magnetic Particles , 2006 .

[10]  Masud Mansuripur Radiation pressure and the linear momentum of the electromagnetic field. , 2004, Optics express.

[11]  A. C. Walker,et al.  PHOTON DRAG IN GERMANIUM , 1970 .

[12]  M. Mansuripur Radiation pressure and the linear momentum of light in dispersive dielectric media. , 2005, Optics express.

[13]  D. Pritchard,et al.  Photon recoil momentum in dispersive media. , 2005, Physical review letters.

[14]  S. Barnett,et al.  Radiation pressure and momentum transfer in dielectrics: The photon drag effect (11 pages) , 2005 .

[15]  Nelson Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski-Abraham controversy. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[16]  Jin Au Kong,et al.  Stable optical trapping based on optical binding forces. , 2006, Physical review letters.

[17]  Tomasz Grzegorczyk,et al.  Ab initio study of the radiation pressure on dielectric and magnetic media. , 2005, Optics express.

[18]  Max Abraham,et al.  Zur Elektrodynamik bewegter Körper , 1909 .

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  J. H. Poynting XVI. Note on the tangential stress due to light incident obliquely on an absorbing surface , 1905 .

[21]  K.A. Michalski,et al.  Electromagnetic wave theory , 1987, Proceedings of the IEEE.

[22]  R. Loudon Radiation pressure and momentum in dielectrics , 2004 .