Deep learning in the built environment: automatic detection of rooftop solar panels using Convolutional Neural Networks
暂无分享,去创建一个
Jean-Louis Scartezzini | Roberto Castello | Simon Roquette | Martin Esguerra | Adrian Guerra | R. Castello | J. Scartezzini | Simon Roquette | Martin Esguerra | A. Guerra
[1] O. R. Vincent,et al. A Descriptive Algorithm for Sobel Image Edge Detection , 2009 .
[2] Thomas Brox,et al. U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.
[3] J. Carmeliet,et al. Evaluation of photovoltaic integration potential in a village , 2015 .
[4] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[5] Jiangye Yuan,et al. 2016 Ieee International Conference on Big Data (big Data) Large-scale Solar Panel Mapping from Aerial Images Using Deep Convolutional Networks , 2022 .
[6] Jiafan Yu,et al. DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States , 2018, Joule.
[7] D. Assouline,et al. Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests , 2018 .
[8] Zhaojian Huang,et al. Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China , 2019, Applied Energy.
[9] R. Castello,et al. Spatio-temporal modelling and uncertainty estimation of hourly global solar irradiance using Extreme Learning Machines , 2019, Energy Procedia.