Degree spectra of relations on structures of finite computable dimension
暂无分享,去创建一个
[1] Richard A. Shore. RECURSIVELY ENUMERABLE SETS AND DEGREES A Study of Computably Generated Sets (Perspectives in Mathematical Logic) , 1988 .
[2] Richard A. Shore,et al. Models and Computability: Effective Model Theory: The Number of Models and Their Complexity , 1999 .
[3] Richard A. Shore,et al. Computably categorical structures and expansions by constants , 1999, Journal of Symbolic Logic.
[4] S. S. Goncharov,et al. Chapter 2 Elementary theories and their constructive models , 1998 .
[5] Julia F. Knight,et al. Permitting, Forcing, and Copying of a Given Recursive Relation , 1997, Ann. Pure Appl. Log..
[6] E. Barker. Intrinsically gs;0alpha; relations , 1988, Ann. Pure Appl. Log..
[7] Richard A. Shore,et al. Computable Isomorphisms, Degree Spectra of Relations, and Scott Families , 1998, Ann. Pure Appl. Log..
[8] S. Goncharov,et al. Chapter 6 Autostable models and algorithmic dimensions , 1998 .
[9] Jeffrey B. Remmel,et al. Recursive isomorphism types of recursive Boolean algebras , 1981, Journal of Symbolic Logic.
[10] R. Epstein,et al. Hierarchies of sets and degrees below 0 , 1981 .
[11] S. S. Goncharov,et al. Problem of the number of non-self-equivalent constructivizations , 1980 .
[12] Arkadii M. Slinko,et al. Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..
[13] S. S. Goncharov. Computable single-valued numerations , 1980 .
[14] Valentina S. Harizanov. Turing Degrees of Certain Isomorphic Images of Computable Relations , 1998, Ann. Pure Appl. Log..
[15] Valentina S. Harizanov. The Possible Turing Degree of the Nonzero Member in a Two Element Degree Spectrum , 1993, Ann. Pure Appl. Log..
[16] V. Harizanov. Pure computable model theory , 1998 .