Instant Exit from the Asymmetric War of Attrition

In an asymmetric war of attrition the players` prize valuations are drawn from different distributions. A stochastic strength ordering, based upon relative hazard rates, is used to rank these distributions. The stochastically stronger player is perceived to be strong ex ante, even though her realized valuation may be lower ex post. Since the classic war of attrition exhibits multiple equilibria, the game is perturbed; for instance, by imposing an arbitrarily large time limit, or allowing for the arbitrarily small probability of players that are restricted to fighting forever. In the unique equilibrium of the perturbed game, a stochastically weaker player almost always instantly exits at the beginning, even though her valuation may be higher.

[1]  Paul R. Milgrom,et al.  Predation, reputation, and entry deterrence☆ , 1982 .

[2]  J. Vickers,et al.  Perfect Equilibrium in a Model of a Race , 1985 .

[3]  J. Riley,et al.  Evolutionary equilibrium strategies. , 1979, Journal of theoretical biology.

[4]  J. Mirrlees The Theory of Moral Hazard and Unobservable Behaviour: Part I , 1999 .

[5]  J. Tolvanen,et al.  Bargaining and Reputation , 2022 .

[6]  Jennifer F. Reinganum On the diffusion of new technology: A game theoretic approach , 1981 .

[7]  W. Güth,et al.  A comparison of pricing rules for auctions and fair division games , 1986 .

[8]  Paul A. David,et al.  Standards Development Strategies Under Incomplete Information. Isn't the 'Battle of the Sexes' Really a Relevant Game? , 1994 .

[9]  J. Riley,et al.  Politically Contestable Rents And Transfers , 1989 .

[10]  R. McKelvey,et al.  A STATISTICAL THEORY OF EQUILIBRIUM IN GAMES , 1996 .

[11]  A. Rubinstein,et al.  A Sequential Concession Game with Asymmetric Information , 1986 .

[12]  D. Samet,et al.  Dissipation of contestable rents by small numbers of contenders , 1987 .

[13]  J. Mertens,et al.  ON THE STRATEGIC STABILITY OF EQUILIBRIA , 1986 .

[14]  Joseph Farrell,et al.  Coordination Through Committees and Markets , 1987 .

[15]  Richard E. Wilson,et al.  STARTEGIC BARGAINING MODELS AND INTERPRETATION ON STRIKE DATA. , 1989 .

[16]  Carolyn Pitchik,et al.  Equilibria of a two-person non-zerosum noisy game of timing , 1981 .

[17]  Drew Fudenberg,et al.  Preemption, Leapfrogging, and Co­mpetition in Patent Races , 1983 .

[18]  Sven Rady,et al.  Optimal Experimentation in a Changing Environment , 1997 .

[19]  Eric van Damme,et al.  Auctions and distributional conflicts with incomplete information , 1986 .

[20]  A. Casella,et al.  Can Foreign Aid Accelerate Stabilization? , 1994 .

[21]  Simon P. Anderson,et al.  The War of Attrition with Noisy Players , 1999 .

[22]  R. McKelvey,et al.  Quantal Response Equilibria for Normal Form Games , 1995 .

[23]  Joseph Farrell,et al.  Choosing the Rules for Formal Standardization , 2002 .

[24]  B. Nalebuff,et al.  The Devolution of Declining Industries , 1990 .

[25]  G. Tullock Efficient Rent Seeking , 2001 .

[26]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[27]  B. Nalebuff,et al.  Dragon-slaying and ballroom dancing: The private supply of a public good , 1984 .

[28]  Charles A. Holt,et al.  Waiting-Line Auctions , 1982, Journal of Political Economy.

[29]  J. M. Smith,et al.  The war of attrition with random rewards. , 1978, Journal of theoretical biology.

[30]  David M. Kreps,et al.  Reputation and imperfect information , 1982 .

[31]  P. Klemperer Auction Theory: A Guide to the Literature , 1999 .

[32]  Shinsuke Kambe,et al.  Bargaining with Imperfect Commitment , 1999 .

[33]  Jeremy I. Bulow,et al.  Toeholds and Takeovers , 1998, Journal of Political Economy.

[34]  Drew Fudenberg,et al.  Understanding Rent Dissipation: On the Use of Game Theory in Industrial Organization , 1987 .

[35]  C. Cannings,et al.  The Generalized War of Attrition , 1997 .

[36]  Al Slivinski,et al.  Toilet cleaning and department chairing: Volunteering a public service , 1996 .

[37]  Richard A. Posner,et al.  The Social Costs of Monopoly and Regulation , 1974, Journal of Political Economy.

[38]  Charles A. Wilson,et al.  You have printed the following article : The War of Attrition in Continuous Time with Complete Information , 2007 .

[39]  J. Morgan,et al.  An Analysis of the War of Attrition and the All-Pay Auction , 1997 .

[40]  Jennifer F. Reinganum Market Structure and the Diffusion of New Technology , 1981 .

[41]  Michael R. Baye,et al.  Rigging the Lobbying Process: An Application of the All-Pay Auction , 1993 .

[42]  E. Maskin Asymmetric Auctions , 2007 .

[43]  E. Maskin,et al.  Equilibrium in Sealed High Bid Auctions , 2000 .

[44]  Richard A. Posner,et al.  Social Costs of Monopoly and Regulation , 1974 .

[45]  Paul R. Milgrom,et al.  Good News and Bad News: Representation Theorems and Applications , 1981 .

[46]  G. Tullock THE WELFARE COSTS OF TARIFFS, MONOPOLIES, AND THEFT , 1967 .

[47]  Maria-Ángeles de Frutos,et al.  Asymmetric Price-Benefits Auctions , 2000, Games Econ. Behav..

[48]  Allan Drazen,et al.  Inflationary Consequences of Anticipated Macroeconomic Policies , 1986 .

[49]  Alvin E. Roth,et al.  The role of risk aversion in a simple bargaining model , 1985 .

[50]  J. Riley,et al.  Strong evolutionary equilibrium and the war of attrition. , 1980, Journal of theoretical biology.

[51]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[52]  D. Fudenberg,et al.  A Theory of Exit in Duopoly , 1986 .

[53]  P. Klemperer Auctions with almost common values: The 'Wallet Game' and its applications , 1998 .

[54]  Charles A. Wilson,et al.  Reputation and Patience in the 'War of Attrition.' , 1989 .

[55]  Lones Smith,et al.  The Optimal Level of Experimentation , 2000 .

[56]  F. Fisher The Social Costs of Monopoly and Regulation: Posner Reconsidered , 1985, Journal of Political Economy.

[57]  David M. Kreps,et al.  Rational cooperation in the finitely repeated prisoners' dilemma , 1982 .

[58]  Wolfgang Leininger,et al.  Asymmetric All-Pay Auctions with Incomplete Information: The Two-Player Case , 1996 .

[59]  J. Sákovics,et al.  The war of attrition with incomplete information , 1995 .

[60]  David P. Myatt Instant Exit from the War of Attrition , 1999 .

[61]  Jacob K. Goeree,et al.  Rent Seeking with Bounded Rationality: An Analysis of the All‐Pay Auction , 1998, Journal of Political Economy.

[62]  J. M. Smith The theory of games and the evolution of animal conflicts. , 1974, Journal of theoretical biology.

[63]  Chris Cannings,et al.  The n-person war of attrition , 1989 .

[64]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[65]  Arnold C. Harberger Monopoly and Resource Allocation , 1954 .

[66]  Michael R. Baye,et al.  The all-pay auction with complete information , 1990 .

[67]  Larry Samuelson,et al.  Bargaining with Two-sided Incomplete Information: An Infinite Horizon Model with Alternating Offers , 1987 .

[68]  M. Rothschild,et al.  Increasing risk: I. A definition , 1970 .

[69]  Chris Cannings,et al.  The Finite Horizon War of Attrition , 1995 .

[70]  On Perfect Rent Dissipation , 1987 .