Adaptive Finite Element Approximation for a Class of Parameter Estimation Problems

In this paper, we investigate the finite element approximation of a class of parameter estimation problems which are the form of performance as the optimal control problems governed by bilinear parabolic equations. We propose to use adaptive multi-meshes in developing efficient algorithms for the estimation problems. We derive a posteriori error estimators for both the control and state approximations, which particularly suit an adaptive multi-meshes finite element scheme. The error estimators are then implemented and tested with promising numerical results.

[1]  H. Rui,et al.  Finite Element Approximation of Semilinear Parabolic Optimal Control Problems , 2011 .

[2]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[3]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[4]  Wenbin Liu,et al.  Local A Posteriori Error Estimates for Convex Boundary Control Problems , 2009, SIAM J. Numer. Anal..

[5]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[6]  K. Kunisch,et al.  Adaptive Finite Element Approximation for a Class of Parameter Estimation Problems , 2010 .

[7]  M. Fowler,et al.  Function Spaces , 2022 .

[8]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[9]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[10]  Wei,et al.  A NEW FINITE ELEMENT APPROXIMATION OF A STATE-CONSTRAINED OPTIMAL CONTROL PROBLEM , 2009 .

[11]  Yunqing Huang,et al.  A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations , 2008 .

[12]  Yanping Chen,et al.  Variational discretization for parabolic optimal control problems with control constraints , 2012, J. Syst. Sci. Complex..

[13]  Roland Becker,et al.  A posteriori error estimation for finite element discretization of parameter identification problems , 2004, Numerische Mathematik.

[14]  Ningning Yan,et al.  A posteriori error estimates for optimal control problems governed by parabolic equations , 2003, Numerische Mathematik.

[15]  K. Kunisch,et al.  A posteriori error estimators for a model parameter estimation problem , 2003 .

[16]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[17]  Karl Kunisch,et al.  A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..

[18]  Roland Becker,et al.  A Posteriori Error Estimates for Parameter Identification , 2004 .

[19]  Wenbin Liu,et al.  Adaptive finite element methods for parameter estimation problems in linear elasticity , 2009 .

[20]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[21]  Wenbin Liu,et al.  A Posteriori Error Estimates for Convex Boundary Control Problems , 2001, SIAM J. Numer. Anal..

[22]  Ruo Li,et al.  On Multi-Mesh H-Adaptive Methods , 2005, J. Sci. Comput..

[23]  Danping Yang,et al.  A PRIORI ERROR ESTIMATE AND SUPERCONVERGENCE ANALYSIS FOR AN OPTIMAL CONTROL PROBLEM OF BILINEAR TYPE , 2008 .

[24]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[25]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[26]  Rolf Rannacher,et al.  An Optimal Control Approach to A-Posteriori Error Estimation , 2001 .

[27]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[28]  G. M. Troianiello,et al.  Elliptic Differential Equations and Obstacle Problems , 1987 .

[29]  Tao Feng,et al.  Adaptive finite element methods for the identification of distributed parameters in elliptic equation , 2008, Adv. Comput. Math..

[30]  Yunqing Huang,et al.  Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems , 2010, J. Sci. Comput..

[31]  Kazufumi Ito,et al.  The primal-dual active set strategy as a semi-smooth Newton method for quadratic problems with affine constraints , 2002 .

[32]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[33]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[34]  Wenbin Liu,et al.  Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41 , 2008 .