Graph theoretical representation of ANN architectures on regular two-dimensional grids for VLSI implementations

The system-on-chip design of purely digital architectures, which are based on massively parallel Markov random field (MRF) processing principles is so far an unstructured, time consuming, fault-prone and complex task. Up to now a tool-kit is not available to systematically support the VLSI design task in a single coherent environment and along a seamless design flow for various digital semiconductor-technologies. In this contribution, we report on a completely technology-independent and graph-theoretical approach for the VLSI design of massively parallel MRF processing devices. The paper is finalized by selected results, which show generated graphs, synthesis results and prototypical implementations using FPGA technologies. All together these results demonstrate the capability of the proposed graph-theoretical approach and manifest the industrial relevance of the developed tool-kit.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  Thomas Hofmann,et al.  Data clustering and beyond: a deterministic annealing framework for exploratory data analysis , 1997 .

[3]  Emanuele Trucco,et al.  Robust motion and correspondence of noisy 3-D point sets with missing data , 1999, Pattern Recognit. Lett..

[4]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[5]  A. Khachaturyan,et al.  The thermodynamic approach to the structure analysis of crystals , 1981 .

[6]  Xavier Guyon,et al.  Random fields on a network , 1995 .

[7]  Joachim M. Buhmann,et al.  Histogram clustering for unsupervised segmentation and image retrieval , 1999, Pattern Recognit. Lett..

[8]  Krishnamoorthy Sivakumar,et al.  Morphologically Constrained GRFs: Applications to Texture Synthesis and Analysis , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Stan Z. Li Markov Random Field Modeling in Image Analysis , 2009, Advances in Pattern Recognition.

[10]  Josiane Zerubia,et al.  A Markovian model for contour grouping , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[11]  Josiane Zerubia,et al.  Image classification using Markov random fields with two new relaxation methods : deterministic pseudo annealing and modified metropolis dynamics , 1992 .

[12]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[13]  Grahame B. Smith Stuart Geman and Donald Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images”; , 1987 .

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[15]  T. Stephenson Image analysis , 1992, Nature.

[16]  P. Pérez,et al.  Markov random fields and images , 1998 .

[17]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[18]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[19]  D. Brook On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems , 1964 .

[20]  Robert Azencott,et al.  Simulated annealing : parallelization techniques , 1992 .

[21]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[22]  Peter Salamon,et al.  Facts, Conjectures, and Improvements for Simulated Annealing , 1987 .

[23]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[24]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[25]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Jan Puzicha Multiscale annealing for grouping, sementation and image quantization , 1999 .

[27]  Joachim M. Buhmann,et al.  Unsupervised Texture Segmentation in a Deterministic Annealing Framework , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[29]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[30]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[31]  Martin Pincus,et al.  Letter to the Editor - A Monte Carlo Method for the Approximate Solution of Certain Types of Constrained Optimization Problems , 1970, Oper. Res..

[32]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[33]  K. Riedel Numerical Bayesian Methods Applied to Signal Processing , 1996 .

[34]  G. Grimmett A THEOREM ABOUT RANDOM FIELDS , 1973 .