Learning subcategory relevances for category recognition

A real-world object category can be viewed as a characteristic configuration of its parts, that are themselves simpler, smaller (sub)categories. Recognition of a category can therefore be made easier by detecting its constituent subcategories and combing these detection results. Given a set of training images, each labeled by an object category contained in it, we present an approach to learning: (1) Taxonomy defined by recursive sharing of subcategories by multiple image categories; (2) Subcategory relevance as the degree of evidence a subcategory offers for the presence of its parent; (3) Likelihood that the image contains a subcategory; and (4) Prior that a subcategory occurs. The images are represented as points in a feature space spanned by confidences in the occurrences of the subcategories. The subcategory relevances are estimated as weights, necessary to rescale the corresponding axes of the feature space so that the images with the same label are closer to each other than to those with different labels. When a new image is encountered, the learned taxonomy, relevances, likelihoods, and priors are used by a linear classifier to categorize the image. On the challenging Caltech-256 dataset, the proposed approach significantly outperforms the best categorizations reported. This result is significant in that it not only demonstrates the advantages of exploiting subcategory taxonomy for recognition, but also suggests that a feature space spanned by part properties, instead of direct object properties, allows for linear separation of image classes.

[1]  Shimon Ullman,et al.  Object recognition with informative features and linear classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  Narendra Ahuja,et al.  Extracting Subimages of an Unknown Category from a Set of Images , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Narendra Ahuja,et al.  Unsupervised Category Modeling, Recognition, and Segmentation in Images , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[5]  Antonio Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[6]  Jitendra Malik,et al.  Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[7]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[8]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[10]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[11]  Dan Roth,et al.  Learning to detect objects in images via a sparse, part-based representation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Narendra Ahuja,et al.  Learning the Taxonomy and Models of Categories Present in Arbitrary Images , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[13]  Yijun Sun,et al.  Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.