Finite element model for the simulation of skeletal muscle fatigue

In the present paper a new approach for the modelling of fatigue effects in skeletal muscle is proposed. This concept is micromechanically motivated. It incorporates the intramuscular connective tissue (passive part of the material) which surrounds the contractile muscle fibres (active part of the material). By sustaining a certain force level, these fibres show fatigue effects, expressed by a decrease of the retentive force. To incorporate such effects in a finite element framework we use a fatigue model that allows us to describe the dynamical processes between active, fatigued and recovered fibres. The chosen modelling strategy facilitates the efficient transport of the known information about physiological processes in the fibre to the three-dimensional macroscopic level where e.g. the dependence of muscle contraction on fatigue effects is studied. Besides the theoretical derivation of the modelling approach, simulations at fibre level as well as at muscle level (for idealised and non-idealised muscle geometries) are investigated. The paper closes with a qualitative comparison of the model with experimental data. Finite-Element-Modell zur Simulation von Skelettmuskelermudung In dem vorliegenden Artikel wird ein neuer Ansatz zu Beschreibung von Ermudungseffekten in Skelettmuskeln vorgestellt. Dieses Konzept ist mikromechanisch motiviert. Es berucksichtigt das intramuskulare Gewebe (passiver Anteil des Materials), das die kontraktilen Muskelfasern (aktiver Anteil des Materials) einfasst. Bei Aufrechterhaltung eines bestimmten Kraftlevels zeigen diese Fasern Ermudungseffekte. Diese ausern sich in der Abnahme der zu haltenden Kraft. Um einen solchen Effekt im Rahmen der Finite-Elemente-Methode umzusetzen, wird ein Ermudungsmodell verwendet, welches erlaubt, die dynamischen Prozesse zwischen aktiven, ermudeten und neuerlich aktivierten Fasern zu beschreiben. Mit dem gewahlten Modellierungskonzept ist es auf effizientem Wege moglich, bekannte physiologische Prozesse auf Faserebene auf die Ebene eines dreidimensionalen Skelettmuskels zu transferieren, um somit z. B. Einflusse wie Ermudungseffekte zu studieren. Neben der theoretischen Herleitung des Modells werden in dieser Arbeit Simulationen auf Faserebene sowie auf Muskelebene (fur idealisierte als auch reale Muskelgeometrien) durchgefuhrt. Der Artikel schliest mit einem qualitativen Vergleich des Modells mit Experimenten.

[1]  Gordon Clapworthy,et al.  An Anatomy-Based Approach to Human Muscle Modeling and Deformation , 2002, IEEE Trans. Vis. Comput. Graph..

[2]  E. Fiume,et al.  Documentation and three‐dimensional modelling of human soleus muscle architecture , 2003, Clinical anatomy.

[3]  J. Hocquette,et al.  Age-related Changes and Location of Types I, III, XII and XIV Collagen During Development of Skeletal Muscles from Genetically Different Animals , 2000, The Histochemical Journal.

[4]  Ray Vanderby,et al.  Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. , 2006, Matrix biology : journal of the International Society for Matrix Biology.

[5]  D G Stuart,et al.  Neurobiology of muscle fatigue. , 1992, Journal of applied physiology.

[6]  S. Gandevia Spinal and supraspinal factors in human muscle fatigue. , 2001, Physiological reviews.

[7]  Markus Böl,et al.  Finite element modelling of rubber-like polymers based on chain statistics , 2006 .

[8]  M G Pandy,et al.  Computer modeling and simulation of human movement. , 2001, Annual review of biomedical engineering.

[9]  B. Picard,et al.  Age-related changes and location of type I, III, IV, V and VI collagens during development of four foetal skeletal muscles of double-muscled and normal bovine animals. , 1999, Tissue & cell.

[10]  Oxorn Vm,et al.  Resolving discrepancies in image research: the importance of direct observation in the illustration of the human soleus muscle. , 1998 .

[11]  Jing Z. Liu,et al.  A dynamical model of muscle activation, fatigue, and recovery. , 2001, Biophysical journal.

[12]  A J Fuglevand,et al.  Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand. , 1999, Journal of neurophysiology.

[13]  W Herzog,et al.  A Framework for Structured Modeling of Skeletal Muscle , 2004, Computer methods in biomechanics and biomedical engineering.

[14]  J. Zlatanova,et al.  Single molecule force spectroscopy in biology using the atomic force microscope. , 2000, Progress in biophysics and molecular biology.

[15]  Mitsumasa Iwamoto,et al.  Generation of Maxwell displacement current from spread monolayers containing azobenzene , 1992 .

[16]  S. Delp,et al.  A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. , 2005, Journal of biomechanics.

[17]  R. McCormick The flexibility of the collagen compartment of muscle. , 1994, Meat science.

[18]  B Bigland-Ritchie,et al.  EMG/FORCE RELATIONS AND FATIGUE OF HUMAN VOLUNTARY CONTRACTIONS , 1981, Exercise and sport sciences reviews.

[19]  S. Binder-Macleod,et al.  A predictive model of fatigue in human skeletal muscles. , 2000, Journal of applied physiology.

[20]  S. Binder-Macleod,et al.  A predictive fatigue model. II. Predicting the effect of resting times on fatigue , 2002, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[21]  S. Gandevia,et al.  Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. , 1999, Journal of neurophysiology.

[22]  D. Winter,et al.  Models of recruitment and rate coding organization in motor-unit pools. , 1993, Journal of neurophysiology.

[23]  S C Gandevia,et al.  Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. , 2000, Journal of applied physiology.

[24]  S. Binder-Macleod,et al.  A predictive fatigue model. I. Predicting the effect of stimulation frequency and pattern on fatigue , 2002, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[25]  R. Blickhan,et al.  A finite-element model for the mechanical analysis of skeletal muscles. , 2000, Journal of theoretical biology.

[26]  J. Stephens,et al.  Fatigue of maintained voluntary muscle contraction in man , 1972, The Journal of physiology.

[27]  D. Chow,et al.  Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction. , 2004, Bio-medical materials and engineering.

[28]  Michelle D. Wang,et al.  Stretching of single collapsed DNA molecules. , 2000, Biophysical journal.

[29]  P A Huijing,et al.  Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. , 1999, Journal of biomechanics.

[30]  P. Merton Voluntary strength and fatigue , 1954, The Journal of physiology.